Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Стехина С.Н., начальник отдела макроэкономического анализа и финансовых балансов министерства экономического развития и торговли Ставропольского края,...полностью>>
'Методические указания'
Методические указания разработаны на основе программы курса "Организация труда персонала". Выполнение курсового проекта является одним из э...полностью>>
'Документ'
О.М. Ігнатьєв (заступник головного редактора), В.О. Лісобей (науковий редактор), Н.А. Мацегора (відповідальний секретар), Є.П. Белобров, В.М. Євстафьє...полностью>>
'Документ'
Об утверждении Наставления по технической службе Министерства Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидаций п...полностью>>

Разрешение революций 71

Главная > Решение
Сохрани ссылку в одной из сетей:

Вернемся теперь к другому, более трудному и более содержательному аспекту параллелизма между головоломками и проблемами нормальной науки. Проблема, классифицируемая как головоломка, должна быть охарактеризована не только тем, что она имеет гарантированное решение. Должны существовать также правила, которые ограничивают как природу приемлемых решений, так и те шаги, посредством которых достигаются эти решения. Например, решить составную картинку-загадку не значит “составить картинку”. Ребенок или современный художник мог бы сделать это, складывая разбросанные, произвольно выбранные элементы, как абстрактные формы, на некотором нейтральном фоне. Картинка, созданная таким образом, может оказаться намного лучше и быть более оригинальной, чем та, из которой головоломка была сделана. Тем не менее такая картинка не могла бы быть ее решением. Чтобы получить настоящее решение, должны быть использованы все фрагменты, их плоская сторона должна быть обращена вниз и они должны быть собраны без усилий и использованы без остатка. Таковы некоторые правила решения картинки-головоломки. Подобные ограничения, накладываемые на приемлемые решения кроссвордов, загадок, шахматных задач и т. д., вскрываются без труда.

Если мы придадим значительно более широкий смысл термину “правило” (который иногда эквивалентен “утвердившейся точке зрения” или “предпосылке”), тогда проблемы, допустимые в данной исследовательской традиции, имеют большое сходство с множеством характеристик головоломки. Ученый, создающий инструмент для определения длины световых волн, не должен удовлетворяться такой аппаратурой, которая просто сопоставляет особые спектральные линии и особые числа. Он не просто исследует или измеряет. Наоборот, он должен показать, анализируя свою аппаратуру на основе созданной основы оптической теории, что числа, которые дает его прибор, входят в теорию как длины волн. Если неясности в теории или какой-то неисследованный компонент в его аппаратуре остаются и мешают завершить демонстрацию, его коллеги могут легко заключить, что ему не удалось измерить ничего вообще. Например, максимумы в разбросе электронов, которые позднее были представлены как указание на длины волн электрона, не имели явного значения, когда впервые были открыты и зафиксированы. Прежде чем они стали показателями чего-либо вообще, их необходимо было соотнести с теорией, подсказавшей волнообразное поведение движущихся частиц. И даже после того, как эта связь была установлена, аппаратура должна быть сконструирована заново таким образом, чтобы экспериментальные результаты могли недвусмысленно согласовываться с теорией2. До тех пор пока эти условия не удовлетворены, ни одна проблема не может считаться решенной.

Подобные виды ограничений связывали приемлемые решения с теоретическими проблемами. На протяжении всего XVIII века те ученые, которые пытались вывести наблюдаемое движение Луны из ньютоновских законов движения и тяготения, постоянно терпели в этом неудачи. В конце концов некоторые из них предложили заменить закон обратной зависимости от квадрата расстояния другим законом, который отличался от первого тем, что действовал на малых расстояниях. Однако для этого следовало бы изменить парадигму, определить условия новой головоломки и отказаться от решения старой. В данном случае ученые сохраняли правила до тех пор, пока в 1750 году один из них не открыл, каким образом эти правила могли быть использованы с успехом3. Другое решение вопроса могло дать лишь изменение в правилах игры.

Изучение традиций нормальной науки раскрывает множество дополнительных правил, а они в свою очередь дают массу информации о тех предписаниях, которые выводят ученые из своих парадигм. Что же можно сказать об основных категориях, которые охватывают эти правила?4 Наиболее очевидные и, вероятно, наиболее обязывающие правила показаны на примере тех видов обобщений, которые мы только что отметили. Это эксплицитные утверждения о научном законе, о научных понятиях и теориях. До тех пор пока они остаются признанными, они помогают выдвигать головоломки и ограничивать приемлемые решения. Законы Ньютона, например, выполняли подобные функции в течение XVIII и XIX веков. Пока они выполняли эти функции, количество материи было фундаментальной онтологической категорией для ученых-физиков, а силы, возникающие между частицами материи, были основным предметом исследования5. В химии законы постоянных и определенных пропорций имели долгое время точно такую же силу: с их помощью была поставлена проблема атомных весов, ограничены приемлемые результаты химического анализа и химики были информированы о том, чту представляют собой атомы и молекулы, соединения и смеси6. Уравнения Максвелла и законы статистической термодинамики имеют то же самое значение и функции в наше время.

Однако правила, подобные этим, не являются исключительным и даже наиболее интересным видом правил, открытых при изучении истории. Например, на более низком или более конкретном уровне, чем законы и теории, есть множество предписаний по поводу предпочтительных типов инструментария и способов, которыми принятые инструменты могут быть правомерно использованы. Изменение взглядов на роль огня в химическом анализе сыграло жизненно важную роль в развитии химии XVII века7. Гельмгольц в XIX веке натолкнулся на сильное противодействие со стороны физиологов, полагавших, что физическое экспериментирование не может помочь исследованиям в их области8. В том же веке весьма любопытная история создания химической хроматографии еще раз иллюстрировала стойкость предписаний относительно инструментов, которые в той же мере, как законы и теории, снабжают ученых правилами игры9. Анализируя открытие рентгеновских лучей, мы обнаружим основания для возникновения предписаний подобного рода.

Менее локальными и преходящими, хотя все же не абсолютными, характеристиками науки являются предписания более высокого уровня; я имею в виду квазиметафизические предписания, которые историческое исследование постоянно обнаруживает в науке. Например, приблизительно после 1630 года и в особенности после появления научных работ Декарта, имевших необычайно большое влияние, большинство ученых-физиков допускало, что универсум состоит из микроскопических частиц, корпускул, и что все явления природы могут быть объяснены в терминах корпускулярных форм, корпускулярных размеров, движения и взаимодействия. Этот набор предписаний оказался и метафизическим и методологическим. В качестве метафизического он указывал физикам, какие виды сущностей действительно имеют место во Вселенной, а каких нет: существует лишь материя, имеющая форму и находящаяся в движении. В качестве методологического набора предписаний он указывал физикам, какими должны быть окончательные объяснения и фундаментальные законы: законы должны определять характер корпускулярного движения и взаимодействия, а объяснения должны сводить всякое данное природное явление к корпускулярному механизму, подчиняющемуся этим законам. Еще более важно то, что корпускулярное понятие универсума указывало ученым множество проблем, подлежащих исследованию. Например, химик, принявший, подобно Бойлю, новую философию, обращал особое внимание на реакции, которые можно было бы рассматривать как превращения вещества. Они показывали более ясно, чем другие, процесс корпускулярного перераспределения, который должен лежать в основании всех химических превращений10. Подобные признаки влияния корпускуляризма можно наблюдать при изучении механики, оптики и теплоты.

Наконец, на еще более высоком уровне есть другая система предписаний, без которых человек не может быть ученым. Ученый должен, например, стремиться понять мир, расширять пределы области познания и повышать точность, с которой она должна быть упорядочена. Это предписание должно в свою очередь привести ученого к тщательному исследованию — как им самим, так и его коллегами — некоторых аспектов природы с учетом множества эмпирических деталей. И если данное исследование выявляет моменты явного нарушения порядка, то это должно быть для него призывом к новому усовершенствованию приборов наблюдения или к дальнейшей разработке его теорий. Нет никакого сомнения, что есть и другие правила, подобные этим, которыми пользуются ученые во все времена.

Существование такой жестко определенной сети предписаний — концептуальных, инструментальных и методологических — представляет основание для метафоры, уподобляющей нормальную науку решению головоломок. Поскольку эта сеть дает правила, которые указывают исследователю в области зрелой науки, чту представляют собой мир и наука, изучающая его, постольку он может спокойно сосредоточить свои усилия на эзотерических проблемах, определяемых для него этими правилами и существующим знанием. От отдельного ученого требуется затем лишь решение оставшихся нерешенными головоломок. В этих и других отношениях обсуждение головоломок и правил проливает свет на природу нормальной научной практики, хотя, с другой стороны, такой подход может ввести в заблуждение. Очевидно, что существуют правила, которых придерживаются все ученые-профессионалы в данное время, тем не менее эти правила сами по себе не могут охватить все то общее, что имеется в различных видах нормального исследования. Нормальная наука — это в высокой степени детерминированная деятельность, но вовсе нет необходимости в том, чтобы она была полностью детерминирована определенными правилами. Вот почему в начале настоящего очерка я предпочел ввести в качестве источника согласованности в традициях нормального исследования принцип общепринятой парадигмы, а не общепринятых правил, допущений и точек зрения. Правила, как я полагаю, вытекают из парадигм, но парадигмы сами могут управлять исследованием даже в отсутствие правил.

1 Разочарование, вызванное конфликтом между ролью личности и всеобщей моделью развития науки, иногда может быть тем не менее довольно серьезным. По этому вопросу см.: L. S. Kubie. Some Unsolved Problems of the Scientific Career. — “American Scientist”, XLI, 1953, p. 596—613; XLII, 1954, p. 104—112.

2 Краткое рассмотрение эволюции этих экспериментов см. в лекции К. Дж. Дэвиссона в: “Les prix Nobel en 1937”, Stockholm, 1938, p. 4.

3 W. Whewell. History of the Inductive Sciences, rev. ed. London, 1847, II, p. 101—105; 220—222.

4 На этот вопрос меня навел У. О. Хегстром, чья работа в области социологии науки кое-где перекликается с моей.

5 Об этих аспектах теории Ньютона см.: I. В. Cohen. Franklin and Newton: An Inquiry into Speculative Newtonian Experimental Science and Franklin's Work in Electricity as an Example Thereof. Philadelphia. 1956, chap. VII, особенно на стр. 255—257, 275—277.

6 Этот пример подробно обсуждается в конце Х раздела.

7 H. Metzger. Les doctrines chimiques en France du dйbut du XVIIe siиcle а la fin du XVIIIe siиcle. Paris, 1923, p. 359—361; Marie Boas. Robert Boyle and Seventeenth-Century Chemistry. Cambridge, 1958, p. 112—115.

8 L. Kцnigsberger. Hermann von Helmholtz. Oxford, 1906, p. 65—66.

9 J. E. Meinhard. Chromatography: A Perspective. — “Science”, CX, 1949, p. 387—392.

10 О корпускуляризме см.: M. Boas. Establishment of the Mechanical Philosophy. — “Osiris”, X, 1952, p. 412—541. О его влиянии на химию Бойля см.: Т. S. Kuhn. Robert Boyle and Structural Chemistry in the Seventeenth Century. — “Isis”, XLIII, 1952, p. 12—36.

Далше...

Оглавление

V

ПРИОРИТЕТ ПАРАДИГМ

Чтобы раскрыть отношение между правилами, парадигмами и нормальной наукой, посмотрим прежде всего, каким образом историк науки выделяет особые совокупности предписаний, которые только что были описаны как принятые правила. Пристальное историческое исследование данной отрасли науки в данное время открывает ряд повторяющихся и типичных (quasi-standard) иллюстраций различных теорий в их концептуальном, исследовательском и инструментальном применении. Они представляют собой парадигмы того или иного научного сообщества, раскрывающиеся в его учебниках, лекциях и лабораторных работах. Изучая и практически используя их, члены данного сообщества овладевают навыками своей профессии. Разумеется, помимо этого, историк науки обнаружит и неясные области, охватывающие достижения, статус которых пока еще сомнителен, но суть проблемы и технические средства для ее решения известны. Несмотря на изредка встречающиеся неясности, парадигмы зрелого научного сообщества могут быть определены сравнительно легко.

Однако определение парадигм, разделяемых всеми членами сообщества, еще не означает определение общих для них правил. Это требует второго шага, причем шага несколько иного характера. Предпринимая его, историк науки должен сравнить парадигмы научного сообщества друг с другом и рассмотреть их в контексте текущих исследовательских сообщений сообщества. Цель, которую при этом преследует историк науки, заключается в том, чтобы раскрыть, какие именно элементы, в явном или неявном виде, члены данного сообщества могут абстрагировать из их более общих, глобальных парадигм и использовать их в качестве правил в своих исследованиях. Всякий, кто предпринял попытку описать или анализировать эволюцию той или иной частной научной традиции, непременно будет искать принятые принципы и правила подобного рода. И, как показано в предыдущем разделе, почти неизменно ему сопутствует в этом по крайней мере частичный успех. Но если он приобрел опыт, примерно такой же, как и мой собственный, он придет к выводу, что отыскивать правила — занятие более трудное и приносящее меньше удовлетворения, чем обнаружение парадигмы. Некоторые обобщения, к которым он прибегает для того, чтобы описать убеждения, разделяемые научным сообществом, не будут вызывать сомнения. Однако другие, в том числе и те, которые использовались выше в качестве иллюстраций, будут казаться неясными. Так или иначе, он может вообразить, что эти обобщения почти во всех случаях должны были отвергаться некоторыми членами группы, которую он изучает. Тем не менее, если согласованность исследовательской традиции должна быть понята исходя из правил, необходимо определить их общее основание в соответствующей области. В результате отыскание основы правил, достаточных для того, чтобы установить данную традицию нормального исследования, становится причиной постоянного и глубокого разочарования.

Однако осознание этих неудач дает возможность установить их источник. Ученые могут согласиться с тем, что Ньютон, Лавуазье, Максвелл или Эйнштейн дали, очевидно, более или менее окончательное решение ряда важнейших проблем, но в то же время они могут не согласиться, иногда сами не сознавая этого, с частными абстрактными характеристиками, которые делают непреходящим значение этих решений. Иными словами, они могут согласиться в своей идентификации парадигмы, не соглашаясь с ее полной интерпретацией или рационализацией или даже не предпринимая никаких попыток в направлении интерпретации и рационализации парадигмы. Отсутствие стандартной интерпретации или общепринятой редукции к правилам не будет препятствовать парадигме направлять исследование. Нормальная наука может быть детерминирована хотя бы частично непосредственным изучением парадигм. Этому процессу часто способствуют формулировки правил и допущений, но он не зависит от них. В самом деле, существование парадигмы даже неявно не предполагало обязательного наличия полного набора правил1.

Первым следствием этих положений неизбежно является постановка проблем. Что удерживает ученого в рамках той или иной частной традиции нормального научного исследования при отсутствии прочного фундамента правил? Что может означать фраза: “непосредственное изучение парадигм”? Более или менее удовлетворительные ответы на подобные вопросы, хотя и в совершенно другом контексте, дал Л. Витгенштейн в поздний период своих исследований. Поскольку контекст его рассуждений более элементарный и более известный, будет легче рассмотреть прежде всего его форму аргументации. Что необходимо знать, спрашивает Л. Витгенштейн, чтобы недвусмысленно и без излишних аргументов использовать такие слова, как “стул”, “лист” или “игра”?2

Этот вопрос далеко не новый. Обычно, отвечая на него, говорят, что мы обязаны знать, сознательно или интуитивно, чту представляет собой стул, лист или игра. Иными словами, мы должны иметь способность схватывать некоторую совокупность неотъемлемых свойств, которыми обладают все игры и только игры. Однако Витгенштейн пришел к выводу, что если задан способ употребления языка и тип универсума, к которому мы его применяем, то нет необходимости в такой совокупности характеристик. Хотя обсуждение некоторых из неотъемлемых свойств, присущих ряду игр, стульев или листьев, часто помогает нам научиться использовать соответствующий термин, нет такого ряда характеристик, которые одновременно применимы ко всем элементам класса, и только к ним. Вместо этого, сталкиваясь с незнакомыми нам ранее действиями, мы применяем термин “игра”, поскольку то, что мы видим, обнаруживает значительное родовое сходство с рядом действий, которые мы еще раньше научились называть этим именем. Короче говоря, для Л. Витгенштейна игры, стулья и листья составляют естественные группы, каждая из которых установлена благодаря сетке частично совпадающих и пересекающихся сходных свойств. Существования такой сетки достаточно для того, чтобы объяснить наш успех в определении соответствующего объекта или деятельности. Но если бы группы, которые мы назвали, пересекались или постепенно сливались друг с другом, то есть, если бы они не были естественными, то только тогда наш успех в идентификации и наименовании обеспечил бы очевидность ряда общих характеристик, соответствующих каждому из класса имен, которые мы используем.

Нечто подобное может иметь силу и для различных исследовательских проблем и технических приемов, которые связаны с отдельно взятой традицией нормального научного исследования. Общее между ними состоит не в том, что они удовлетворяют некоторому эксплицитному или даже полностью выявленному ряду правил и допущений, которые определяют характер традиции и укрепляют ее в научном мышлении, а в том, что их можно отнести на основании сходства или путем моделирования к той или иной части научного знания, которую какое-то научное сообщество признает в качестве одного из установленных достижений. Ученые исходят в своей работе из моделей, усвоенных в процессе обучения и из последующего изложения их в литературе, часто не зная и не испытывая никакой потребности знать, какие характеристики придали этим моделям статус парадигм научного сообщества. Благодаря этому ученые не нуждаются ни в какой полной системе правил. Согласованность, обнаруженная исследовательской традицией, которой они придерживаются, может не подразумевать даже существования исходной основы правил и допущений; только дополнительное философское или историческое исследование может их вскрыть. Тот факт, что ученые обычно не интересуются и не обсуждают вопрос о том, чту придает правомерность частным проблемам и решениям, наводит нас на мысль, что ответ на них известен им по крайней мере интуитивно. Но это можно считать признаком того, что ни вопрос, ни ответ не являются чем-то непосредственно касающимся их исследования. Парадигмы могут предшествовать любому набору правил исследования, который может быть из них однозначно выведен, и быть более обязательными или полными, чем этот набор.

До сих пор эта точка зрения излагалась чисто теоретически: парадигмы могут определять характер нормальной науки без вмешательства открываемых правил. Позвольте мне теперь попытаться лучше разъяснить эту позицию и подчеркнуть ее актуальность путем указания на некоторые причины, позволяющие думать, что парадигма действительно функционирует подобным образом. Первая причина, которая уже обсуждалась достаточно подробно, состоит в чрезвычайной трудности обнаружения правил, которыми руководствуются ученые в рамках отдельных традиций нормального исследования. Эти трудности напоминают сложную ситуацию, с которой сталкивается философ, пытаясь выяснить, что общего имеют между собой все игры. Вторая причина, в отношении которой первая в действительности является следствием, коренится в природе научного образования. Ученые (это должно быть уже ясно) никогда не заучивают понятия, законы и теории абстрактно и не считают это самоцелью. Вместо этого все эти интеллектуальные средства познания с самого начала сливаются в некотором ранее сложившемся исторически и в процессе обучения единстве, которое позволяет обнаружить их в процессе их применения. Новую теорию всегда объявляют вместе с ее применениями к некоторому конкретному разряду природных явлений. В противном случае она не могла бы даже претендовать на признание. После того как это признание завоевано, данные или другие приложения теории сопровождают ее в учебниках, по которым новое поколение исследователей будет осваивать свою профессию. Приложения не являются просто украшением теории и не выполняют только документальную роль. Напротив, процесс ознакомления с теорией зависит от изучения приложений, включая практику решения проблем как с карандашом и бумагой, так и с приборами в лаборатории. Например, если студент, изучающий динамику Ньютона, когда-либо откроет для себя значение терминов “сила”, “масса”, “пространство” и “время”, то ему помогут в этом не столько неполные, хотя в общем-то полезные, определения в учебниках, сколько наблюдение и применение этих понятий при решении проблем.

Данный процесс обучения путем теоретических или практических работ сопровождает весь ход приобщения к профессии ученого. По мере того как студент проходит путь от первого курса до докторской диссертации и дальше, проблемы, предлагаемые ему, становятся все более сложными и неповторимыми. Но они по-прежнему в значительной степени моделируются предыдущими достижениями, так же как и проблемы, обычно занимающие его в течение последующей самостоятельной научной деятельности. Никому не возбраняется думать, что на этом пути ученый иногда пользуется интуитивно выработанными им самим правилами игры, но оснований для того, чтобы верить в это, слишком мало. Хотя многие ученые говорят уверенно и легко о собственных индивидуальных гипотезах, которые лежат в основе того или иного конкретного участка научного исследования, они характеризуют утвердившийся базис их области исследования, ее правомерные проблемы и методы лишь немногим лучше любого дилетанта. О том, что они вообще усвоили этот базис, свидетельствует главным образом их умение добиваться успеха в исследовании. Однако эту способность можно понять и не обращаясь к предполагаемым правилам игры.

Указанные последствия научного образования имеют оборотную сторону, которая служит основанием для третьей причины, позволяющей предположить, что парадигмы направляют научное исследование как благодаря непосредственному моделированию, так и с помощью абстрагированных из них правил. Нормальная наука может развиваться без правил лишь до тех пор, пока соответствующее научное сообщество принимает без сомнения уже достигнутые решения некоторых частных проблем. Правила, следовательно, должны постепенно приобретать принципиальное значение, а характерное равнодушие к ним должно исчезать всякий раз, когда утрачивается уверенность в парадигмах или моделях. Любопытно, что именно это и происходит. Для допарадигмального периода в особенности характерны частые и серьезные споры о правомерности методов, проблем и стандартных решений, хотя они служат скорее размежеванию школ, чем достижению согласия. Мы уже обращали внимание на такие споры в оптике и теории электричества. Еще более серьезную роль они играли в развитии химии в XVII веке и геологии в начале XIX столетия3. Кроме того, споры, подобные этим, не утихают навсегда с появлением парадигмы. Почти несущественные в течение периода нормальной науки, они регулярно вспыхивают вновь непосредственно в процессе назревания и развертывания научных революций, то есть в такие периоды, когда парадигмы первыми принимают бой и становятся объектом преобразований. Переход от ньютоновской к квантовой механике вызвал много споров как вокруг природы, так и вокруг стандартов физики, причем некоторые из этих споров все еще продолжаются4. Еще живы те, кто, может быть, помнит подобные дискуссии, порожденные электромагнитной теорией Максвелла и статистической механикой5. А еще раньше восприятие механики Галилея и Ньютона вызвало особенно знаменитую серию споров с аристотелианцами, картезианцами и последователями Лейбница о стандартах, правомерных в науке6. Когда ученые спорят о том, были ли решены фундаментальные проблемы в их области, поиски правил приобретают такое значение, которого эти правила обычно не имели. Однако пока парадигмы остаются в силе, они могут функционировать без всякой рационализации и независимо от того, предпринимаются ли попытки их рационализировать.

Мы можем подвести итог этому разделу, указав четвертую причину для признания за парадигмами приоритета первичности по отношению к общепринятым правилам и допущениям. Во введении к данной работе мы предположили, что революции в науке могут быть большими и малыми, что некоторые революции затрагивают только членов узкой профессиональной подгруппы и что для таких подгрупп даже открытие нового и неожиданного явления может быть революционным. В следующем разделе будут рассмотрены отдельные революции этого типа, а пока далеко не ясно, как они могут возникать. Если нормальная наука является столь жесткой и если научные сообщества сплочены так тесно, как подразумевалось выше, то как может изменение парадигмы когда-либо затронуть только маленькую подгруппу? Сказанное до сих пор может навести на мысль, что нормальная наука есть единый монолит и унифицированное предприятие, которое должно устоять или рухнуть вместе с любой из ее парадигм или со всеми вместе. Но в науке, по-видимому, редко бывает что-нибудь подобное или вообще не бывает. Если рассматривать все области науки вместе, то она часто кажется, скорее, шатким сооружением со слабой согласованностью между различными звеньями. Однако все, что мы говорим, не следует рассматривать как противоречие с этим хорошо известным наблюдением. Наоборот, замена парадигм на правила должна облегчить понимание разделения между научными областями и специальностями. Эксплицитные правила, когда они существуют, оказываются обычно общими для весьма большой научной группы, но для парадигм это совсем не обязательно. Исследователи в весьма далеких друг от друга областях науки, скажем в астрономии и таксономической ботанике, получают образование на основе совершенно разных достижений, изложенных в самых разных книгах. И даже ученые, которые работают в тех же или тесно примыкающих областях, приступив к изучению одних и тех же учебников и достижений, вероятнее всего, приобретут различные парадигмы в процессе профессиональной специализации.



Скачать документ

Похожие документы:

  1. А. В. Чудинов 200 лет Великой французской революции

    Документ
    Не много найдется в исторической науке тем, разработка которых сопровождалась бы столь же острой идеологической борьбой, какая ведется уже на протяжении двух столетий вокруг Великой французской революции.
  2. Разрешение Звук

    Решение
    1 mkv 11,5 ч.5м. HDD 1,5Тб #1 13 Друзей Оушена ( 007) 19 0x1080 DD 5.1 mkv 15,3 ч. м. HDD 1,5Тб #1 1 кварталов (Брюс Уиллис) 19 0x79 DD 5.
  3. Революция 1917 г. И советская история в освещении русской религиозной эмигрантской мысли (1)

    Автореферат диссертации
    Защита диссертации состоится 14 ноября 2008 г. в 15.00 на заседании диссертационного совета Д 212.267.03 при ГОУ ВПО «Томский государственный университет» (634050, г.
  4. Революция 1917 г. И советская история в освещении русской религиозной эмигрантской мысли (2)

    Автореферат диссертации
    Защита диссертации состоится 14 ноября 2008 г. в 15.00 на заседании диссертационного совета Д 212.267.03 при ГОУ ВПО «Томский государственный университет» (634050, г.
  5. Расколотая цивилизация. Наличествующие предпосылки и возможные последствия постэкономической революции

    Документ
    Образ расколовшейся цивилизации — это несомненный элемент современного мироощущения, и особенно, наверное, у нас, в России. В чем истоки такого мироощущения? На этот вопрос можно поискать ответы в предлагаемой вниманию читателя новой книге В.

Другие похожие документы..