Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Сценічна кар’єра Соломії Крушельницької тривала більше 25-ти років – від дебюту на львівській сцені в опері “Фаворитка” Доніцетті у 1893 році по 1920...полностью>>
'Программа курса'
Актуальность учебного курса «Культура, литература, религии США и Канады» связана с тем, что расширяющееся взаимодействие между странами, имеющими раз...полностью>>
'Урок'
Оборудование: А) демонстрационные – схема механизма действия стероидных гормонов, схема действия тестостерона в клетке, портрет Жанны ДАрк, хромосомн...полностью>>
'Учебно-методическое пособие'
Историческое краеведение: учебно-методическое пособие для студентов специальности 07.00.02 – Отечественная история. – Казань: Издательство Казанского...полностью>>

Материалы жил, изоляции жил и защитных покровов кабелей

Главная > Документ
Сохрани ссылку в одной из сетей:

  1. Материалы жил, изоляции жил и защитных покровов кабелей. Расшифруйте обозначение следующих марок кабелей: ААБ-10-3×70, ААШв, АСБ, СБШв, АВПБГ -1-3×50+1×25

Кабель - готовое заводское изделие, состоящее из изолированных токоведущих жил, заключенных в защитную герметичную оболочку, которая может быть защищена от механических повреждений броней. Преимущественно применяются кабели с алюминиевыми жилами. Кабели с медными жилами применяются редко: для перемещающихся механизмов, во взрывоопасных помещениях.

Изоляция жил выполняется из кабельной бумаги, пропитанной маслоканифольным составом, резины, поливинилхлорида и полиэтилена. Кабели с бумажной изоляцией, предназначенные для прокладки на вертикальных и крутонаклонных трассах, имеют обедненную пропитку.

Защитная герметичная оболочка кабеля предохраняет изоляцию от вредного действия влаги, газов, кислот и механических повреждений. Оболочки делаются из свинца, алюминия, резины и поливинилхлорида.

В кабелях напряжением выше 1 кВ для повышения электрической прочности между изолированными жилами и оболочкой прокладывается слой поясной изоляции.

Броня кабеля выполняется из стальных лент или стальных оцинкованных проволок. Поверх брони накладывают покровы из кабельной пряжи (джута), пропитанной битумом и покрытой меловым составом. При прокладке кабеля в помещениях, каналах и тоннелях джутовый покров во избежание возможного пожара снимают. Обозначения марок кабелей соответствует их конструкции.

Кабели с бумажной изоляцией и алюминиевыми жилами имеют марки: ААБ, ААГ, ААП, ААШв, АСБ, АСБГ, АСПГ, АСШв. Первая буква обозначает материал жил (А - алюминий, отсутствие впереди буквы А в маркировке означает наличие медной жилы), вторая – материал оболочки (А - алюминий, С - свинец). Буква Б означает, что кабель бронирован стальными лентами; буква Г - отсутствие наружного покрова; Шв - наружный покров выполнен в виде шланга из поливинилхлорида.

Изоляция обозначается: Р - резиновая, П - полиэтиленовая, В -поливинилхлоридная, отсутствие обозначения - бумажная с нормальной пропиткой.

Броня обозначается при выполнении: стальными лентами - Б, плоской оцинкованной стальной проволокой - П, круглой оцинкованной стальной проволокой - К. В маркировке кабеля после буквенных обозначений указывается его номинальное напряжение, кВ; число жил и сечение одной жилы. Например, кабель АВПБГ -1-3x50+1x25- кабель с тремя алюминиевыми жилами по 50 мм2 и четвертой - сечением 25 мм2, полиэтиленовой изоляцией на напряжение 1 кВ, оболочкой из полихлорвинила, бронированный стальными лентами без наружного противокоррозионного покрытия.

  1. Наибольшее число кабелей при прокладке в траншее, канале, туннеле, блоке. Сравнить допустимые токи кабеля одной марки и сечения при разных способах прокладки

Прокладка кабелем может осуществляться несколькими способами: в траншеях, каналах,

туннелях, блоках, эстакадах.

Прокладка кабелей в траншеях.

Прокладка в траншеях не применяется:

на участках с большим числом кабелей;

при большой насыщенности территории подземными и наземными технологическими и транспортными коммуникациями и другими сооружениями;

на участках, где возможно разлитие горячего металла или жидкостей, разрушающе действующих на оболочку кабелей;

в местах, где возможны блуждающие токи опасных значений, большие механические нагрузки, размытие почвы и т. п. При прокладке в одной траншее шести кабелей и более вводится очень большой снижающий коэффициент на допустимую токовую нагрузку. Поэтому не следует прокладывать в одной траншее более шести кабелей. При большом числе кабелей предусматриваются две рядом расположенные траншеи с расстоянием между ними 1,2 м.

Прокладка кабелей в каналах. Прокладка кабелей в железобетонных каналах может быть наружной и внутренней. Этот способ прокладки более дорогостоящий, чем в траншеях. При вне-цеховой канализации на неохраняемой территории каналы прокладываются под землей на глубине 300 мм и более. Глубина канала не более 900 мм. На участках, где возможно разлитие расплавленного металла, жидкостей или других веществ, разрушительно действующих на оболочки кабелей, кабельные каналы применять нельзя.

Прокладка кабелей в туннелях. Прокладка в туннелях удобна и надежна в эксплуатации, но она оправдана лишь при большом числе (белее 30...40) кабелей, идущих в одном направлении, например, на главных магистралях, для связей между главной подстанцией и распределительной и других аналогичных случаях.

Прокладка кабелей в блоках. Прокладка кабелей в блоках надежна, но наименее экономична как по стоимости, так и по пропускной способности кабелей. Она применяется только тогда, когда по местным условиям прокладки недопустимы более простые способы прокладки, а именно: при наличии блуждающих токов, при агрессивных грунтах, вероятности разлива по трассе металла или агрессивных жидкостей и др.

  1. Отличие в конструкциях изолированного провода, кабеля и самонесущего изолированного провода

Изолированные провода (самонесущий изолированный провод, СИП) — многожильные провода для воздушных линий электропередачи, содержащие изолированные жилы и несущий элемент, предназначенный для крепления или подвески провода. Они используются в основном для внутренних сетей. Токоведущие жилы проводов выполняют из круглой медной или алюминиевой проволоки. Изолирующую оболочку выполняют из резины или полихлорвинилового пластиката. Защитные покровы проводов с резиновой изоляцией выполняют в виде оплётки из волокнистых материалов, пропитанной противогнилостным составом. Провода с ПВХ-изоляцией обычно изготовляют без защитных покровов. Применяют также металлические защитные оболочки для защиты от механических повреждений. Самонесущие изолированные провода (СИП) предназначены для применения в воздушных линиях электропередачи (ЛЭП) классов напряжения 0,6/1 кВ и 20 кВ при температуре от - 50 С до + 50 С, с подвеской на опорах или фасадах зданий и сооружений. Защищённые провода — провода для воздушных линий электропередачи, поверх токопроводящей жилы которых наложена экструдированная полимерная защитная изоляция, исключающая короткое замыкание между проводами при схлестывании и снижающая вероятность замыкания на землю. Кабель - готовое заводское изделие, состоящее из изолированных токоведущих жил, заключенных в защитную герметичную оболочку, которая может быть защищена от механических повреждений броней. Силовые кабели выпускаются на напряжение до 110 кВ включительно. Силовые кабели на напряжение до 35 кВ имеют от одной до четырех медных или алюминиевых жил сечениями 1... 2000 мм2. Жилы сечением до 16 мм2- однопроволочные, свыше многопроволочные. По форме сечения жилы одножильных кабелей круглые, а многожильных сегментные или секторные (рис. 3.7). Преимущественно применяются кабели с алюминиевыми жилами. Кабели с медными жилами применяются редко: для перемещающихся механизмов, во взрывоопасных помещениях.

  1. Отличия в принципах работы и назначении выключателя, предохранителя, разъединителя и выключателя нагрузки

Выключатель предназначен для коммутации рабочих и аварийных токов. При разрыве цепи разомкнувшимися контактами выключателя возникает электрическая дуга, которая должна гаситься в специальных устройствах. Контакты выключателя находятся внутри камеры в разомкнутом состоянии. Дугогасительные устройства выключателей используют следующие

принципы быстрого гашения дуги: охлаждение дуги посредством перемещения ее в окружающей среде; обдувание дуги воздухом или холодными неионизированными газами; расщепление дуги на несколько параллельных дуг малого сечения; удлинение, дробление и соприкосновение дуги с твердым диэлектриком; размещение контактов в интенсивно деионизирующей среде; создание высокого давления в дуговом промежутке и т. п.

В установках напряжением 6... 10 кВ, особенно в распределительных пунктах, на цеховых подстанциях предприятий, в городских сетях, широко используются выключатели нагрузки с небольшой дугогасительной камерой, в которой может быть отключен ток только рабочего

режима, но они не рассчитаны на отключение тока короткого замыкания. При размыкании контактов выключателя нагрузки создается видимый разрыв цепи. Выключатели нагрузки в сочетании с высоковольтными предохранителями (ВНП) в известной мере заменяют силовой выключатель. Выключатели нагрузки выполняются на номинальные токи 200 и 400 А, наибольший рабочий ток отключения 400 и 800 А. Плавкие предохранители выполняют операцию автоматического отключения цепи при превышении определенного значения тока. После срабатывания предохранителя необходимо сменить плавкую вставку или патрон, чтобы подготовить аппарат для дальнейшей работы.

Ценными свойствами плавких предохранителей являются простота устройства, относительно малая стоимость, быстрое отключение цепи при коротком замыкании (меньше одного периода), способность предохранителей типа ПК ограничивать ток в цепи при КЗ.

К недостаткам плавких предохранителей относятся следующие: предохранители срабатывают при токе, значительно превышающем номинальный ток плавкой вставки, и поэтому избирательность (селективность) отключения не обеспечивает безопасность отдельных участков сети; отключение цепи плавкими предохранителями связано обычно с перенапряжением; возможно однофазное отключение и последующая ненормальная работа установок.

Разъединителем называется электрический аппарат для оперативного переключения под напряжением участков сети с малыми токами замыкания на землю и создания видимого разрыва. По условиям техники безопасности при производстве работ в установках необходимо иметь видимые разрывы цепи, откуда может быть подано напряжение. Указанное требование обеспечивается разъединителями, которые не имеют устройств для гашения дуги и не допускают переключений под нагрузкой. Поэтому их оснащают блокировкой, предотвращающей отключение нагрузочного тока. Разъединители управляются приводами вручную или дистанционно (но не автоматически).

  1. Влияние категории надежности объекта на схему его электроснабжения

Требования, предъявляемые к надежности электроснабжения от источников питания, определяются потребляемой мощностью объекта и его видом. Приемники электрической энергии в отношении обеспечения надежности электроснабжения разделяются на несколько категорий.

Первая категория – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный экономический ущерб, повреждение дорогостоящего оборудования. Допустимый интервал продолжительности нарушения электроснабжения для электроприемников первой категории не более 1 мин. Электроприемники первой категории должны обеспечиваться электроэнергией от двух независимых источников питания, при отключении одного из них переключение на резервный должно осуществляться автоматически. Согласно ПУЭ к независимым источникам могут быть отнесены две секции или системы шин одной или двух электростанций или подстанций при соблюдении следующих условий:

каждая их этих секций или систем шин питается от независимых источников;

секции шин не связаны между собой или же имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций шин.

Вторая категория – электроприемники, перерыв электроснабжения которых приводит к массовым недоотпускам продукции, массовым простоям рабочих, механизмов. Допустимый интервал продолжительности нарушения электроснабжения для электроприемников второй категории не более 30 мин. Электроприемники второй категории рекомендуется обеспечивать от двух независимых источников питания, переключения можно осуществлять не автоматически.

Третья категория – все остальные электроприемники, не подходящие под определение первой и второй категорий. К этой категории относятся установки вспомогательного производства, склады неответственного назначения. Электроснабжение электроприемников третьей категории может выполняться от одного источника при условии, что перерывы электроснабжения, необходимые для ремонта и замены поврежденного оборудования, не превышают одних суток.

  1. Основные принципы построения схем объектов

Система электроснабжения может быть выполнена в нескольких вариантах, из которых выбирается оптимальный. При его выборе учитываются степень надежности, обеспечение качества электроэнергии, удобство и безопасность эксплуатации, возможность применения прогрессивных методов электромонтажных работ.

Основные принципы построения схем объектов:

максимальное приближение источников высокого напряжения 35 ...220 кВ к электроустановкам потребителей с подстанциями глубокого ввода, размещаемыми рядом с энергоемкими производственными корпусами;

резервирование питания для отдельных категорий потребителей должно быть заложено в схеме и элементах системы электроснабжения. Для этого линии, трансформаторы и коммутационные устройства должны нести в нормальном режиме постоянную нагрузку, а в послеаварийном режиме после отключения поврежденных участков принимать на себя питание оставшихся в работе потребителей с учетом допустимых для этих элементов перегрузок;

секционирование шин всех звеньев системы распределения энергии, а при преобладании потребителей первой и второй категории установка на них устройств АВР.

Схемы строятся по уровневому принципу. Обычно применяются два-три уровня. Первым уровнем распределения электроэнергии является сеть между источником питания объекта и подстанции глубокого ввода (выполненная по упрощенным схемам коммутации на первичном напряжении, получающая питание непосредственно от энергосистемы), если распределение производится при напряжении 110...220 кВ, или между ГПП и РП напряжением 6... 10 кВ, если распределение происходит на напряжении 6... 10 кВ.

Вторым уровнем распределения электроэнергии является сеть между РП (или РУ вторичного напряжения ПГВ) и ТП (или отдельными электроприемниками высокого напряжения).

На небольших и некоторых средних объектах чаще применяется только один уровень распределения энергии - между центром питания от системы и пунктами приема энергии (ТП или высоковольтными электроприемниками).

  1. Пример радиальной схемы без резервирования

Радиальные схемы распределения электроэнергии применяются в тех случаях, когда пункты приема расположены в различных направлениях от центра питания. Они могут быть двух- или одноступенчатыми. На небольших объектах и для питания крупных сосредоточенных потребителей используются одноступенчатые схемы. Двухступенчатые радиальные схемы с промежуточными РП выполняются для крупных и средних объектов с подразделениями, расположенными на большой территории.

  1. Пример радиальной схемы с резервированием

Радиальные схемы распределения электроэнергии применяются в тех случаях, когда пункты приема расположены в различных направлениях от центра питания. Они могут быть двух- или одноступенчатыми. На небольших объектах и для питания крупных сосредоточенных потребителей используются одноступенчатые схемы. Двухступенчатые радиальные схемы с

промежуточными РП выполняются для крупных и средних объектов с подразделениями, расположенными на большой территории.

  1. Пример магистральной схемы без резервирования

Магистральные схемы напряжением 6... 10 кВ применяются при линейном («упорядоченном») размещении подстанций на территории объекта, когда линии от центра питания до пунктов приема могут быть проложены без значительных обратных направлений. Магистральные схемы имеют следующие преимущества: лучшую загрузку кабелей при нормальном режиме, меньшее число камер на РП. К недостаткам магистральных схем следует отнести усложнение схем коммутации при присоединении ТП и одновременное отключение нескольких потребителей, питающихся от магистрали, при ее повреждении. Одиночные магистрали без резервирования (рис. 5.5, а) применяются в тех случаях, когда отключение одного потребителя вызывает необходимость по условиям технологии производства отключения всех остальных потребителей (например, непрерывные технологические линии).

  1. Пример магистральной схемы с резервированием

Магистральные схемы напряжением 6... 10 кВ применяются при линейном («упорядоченном») размещении подстанций на территории объекта, когда линии от центра питания до пунктов приема могут быть проложены без значительных обратных направлений. Магистральные схемы имеют следующие преимущества: лучшую загрузку кабелей при нормальном режиме, меньшее число камер на РП. К недостаткам магистральных схем следует отнести усложнение схем коммутации при присоединении ТП и одновременное отключение нескольких потребителей, питающихся от магистрали, при ее повреждении. На рис. показана

схема, на которой близко расположенные трансформаторные подстанции питаются от разных одиночных магистралей с резервированием по связям на низком напряжении.

  1. Сравнение преимуществ и недостатков магистральных и радиальных схем

Радиальная схема питания обладает большой гибкостью и удобствами в эксплуатации, так как повреждение или ремонт одной линии отражается на работе только одного потребителя. Магистральные схемы имеют следующие преимущества: лучшую загрузку кабелей при нормальном режиме, меньшее число камер на РП. К недостаткам магистральных схем следует отнести усложнение схем коммутации при присоединении ТП и одновременное отключение нескольких потребителей, питающихся от магистрали, при ее повреждении.

  1. Основные группы электроприемников, их номинальные активные и реактивные мощности, напряжения. Частота тока. Режимы работы.

Приемником электроэнергии называется электрическая часть производственной установки, получающая электроэнергию от источника и преобразующая ее в механическую, тепловую, химическую, световую энергию, в энергию электростатического и электромагнитного поля. По характеру использования электроэнергии все многообразие ЭП можно разделить на следующие основные группы.

Электроприводы представляют собой комплекс электрических машин, аппаратов и систем управления, в котором электродвигатели конструктивно связаны с исполнительным механизмом и преобразуют электрическую энергию в механическую работу. В установках, не требующих регулирования скорости в процессе работы, применяются исключительно электроприводы переменного тока (асинхронные и синхронные двигатели). Электроприводы постоянного тока используются в установках, требующих регулирования скорости.

Электродвигатели применяются в приводах различных производственных механизмов на всех промышленных предприятиях. Нерегулируемые электродвигатели переменного тока – основной вид электроприемников в промышленности, на долю которого приходится около 2/3 суммарной мощности.

Светотехнические установки, т.е. устройства, преобразующие электрическую энергию в световое излучение. Электрические источники света по способу генерирования им оптического излучения делятся на температурные и люминесцентные. Первую группу составляют лампы накаливания (тепловое излучение), вторую – газоразрядные лампы (излучение в результате электрического разряда в газах, парах и их смесях.

Электротермические установки, т.е. устройства, преобразующие электрическую энергию в тепловую. Электротермические приемники в соответствии с методами нагрева делятся на следующие группы: печи и установки: сопротивления, индукционные, диэлектрические, электроннолучевые; дуговые электропечи; электросварочные установки.

Электротехнологические установки, в которых электрический ток непосредственно используется для различных технологических процессов. К таким установкам относятся электролизные установки, установки для электроискровой обработки металлов и гальванопокрытий, устройства для создания электромагнитных полей, используемых для технологических нужд (ускорители заряженных частиц, радио, телевидение, связь и т. п.).

ЭП имеют свои характерные особенности и показатели, которые определяют условия электроснабжения, а именно: номинальная (установленная) мощность, род тока, номинальное напряжение, частота тока, режим работы, степень бесперебойности электроснабжения

Под номинальной активной мощностью pн двигателей понимается мощность, развиваемая двигателем на валу при номинальном напряжении, а под номинальной активной мощностью других ЭП – потребляемая ими из сети мощность при номинальном напряжении. Установленной мощностью для печей сопротивления, ванн электролиза и светотехнических устройств является активная мощность, потребляемая этими установками из сети. Номинальной (установленной) мощностью плавильных электропечей и сварочных машин является полная номинальная мощность питающих их трансформаторов. За номинальную мощность двигателей-генераторов, преобразователей частоты и выпрямителей принимается номинальная мощность генератора, преобразователя и выпрямителя.

Паспортная мощность pпасп ЭП, работающих в повторно-кратковременном режиме приводится к номинальной длительной мощности при ПВ=1:

pн=pпасп .

Под номинальной реактивной мощностью ЭП qн понимается реактивная мощность, потребляемая им из сети при номинальной активной мощности и номинальном напряжении.

Для асинхронных двигателей с к.п.д ном:

qном.д= qном.д= tgном

для остальных ЭП

qном= pном tgном,

tgном - коэффициент реактивной мощности, соответствующий cosном - номинальному коэффициенту мощности ЭП.

Режим работы

Для силовых (ЭП) различают три режима работы: продолжительный, кратковременный и повторно-кратковременный



Скачать документ

Похожие документы:

  1. 7. Изоляция кабельной линии и аппаратов высокого напряжения

    Документ
    Электрические кабели – это гибкие изолированные проводники, состоящие из защитной оболочки, проводников (жил), изоляции по отношению к земле и между жилами, и защитного покрова.
  2. Также вы можете провести обучение специалистов в следующих учебных центрах: Москва

    Документ
    Смоленский колледж телекоммуникаций (филиал Санкт-Петербургского государственного университета телекоммуникаций им. Проф. М.А. БончБруевича), тел.(8412) 38-15-05
  3. Курс лекций Барнаул 2001 удк 621. 385 Хмелев В. Н., Обложкина А. Д. Материаловедение и технология конструкционных материалов: Курс лекций

    Курс лекций
    В курсе лекций, читаемых авторами в БТИ АлтГТУ, рассмотрены основы физических явлений, происходящих в диэлектрических, проводниковых, полупроводниковых и магнитных материалах, проведена классификация материалов по их электротехническим,
  4. Иваются основные требования и нормы на мон­таж технологического оборудования, кабельных и воздушных линий связи, проводного вещания, радиовещания и телевиде­ния (1)

    Документ
    Устанавливаются основные требования и нормы на мон­таж технологического оборудования, кабельных и воздушных линий связи, проводного вещания, радиовещания и телевиде­ния.
  5. Иваются основные требования и нормы на мон­таж технологического оборудования, кабельных и воздушных линий связи, проводного вещания, радиовещания и телевиде­ния (2)

    Документ
    Устанавливаются основные требования и нормы на мон­таж технологического оборудования, кабельных и воздушных линий связи, проводного вещания, радиовещания и телевиде­ния.

Другие похожие документы..