Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Цей стандарт поширюється на систему вищої освіти: органи, які здійснюють управління у галузі вищої освіти; інші юридичні особи, що надають освітні по...полностью>>
'Урок'
Однообразие, шаблонное повторение одних и тех же действий убивает интерес к учению. Дети лишаются радости открытия и постепенно могут потерять способ...полностью>>
'Литература'
Художественное богатство европейской поэзии XVII столетия нередко недооценивают. Причина тому - предрассудки, продолжающие иногда все еще определять ...полностью>>
'Реферат'
Цели: Сформулировать задачи курса экономической и социальной географии России. Познакомить учащихся с содержанием курса географии 9 класса, учебным ко...полностью>>

«образование умственное»

Главная > Задача
Сохрани ссылку в одной из сетей:

ТВОРЦЫ НАУКИ

(краткий экскурс в историю математики)

Введение.

«Бог всегда является геометром»

Платон

Математика – древнейшая наука в истории человечества. Она демонстрирует возможности человеческого разума, силу воображения, мощь интуиции, ясность и точность рассуждений так, как это недоступно другим сферам интеллектуальной деятельности. Невозможно познать математику, не ознакомившись с историей её развития. Благодаря замечательным энтузиастам, расшифровавшим древние рукописи и клинописные тексты, удаётся воссоздать пути становления математики и её возрастающую роль в прогрессе человечества.

Галилео Галилей говорил: «Философия природы написана в величайшей книге, которая всегда открыта перед нашими глазами, - я разумею Вселенную, но понять её сможет лишь тот, кто сначала выучит язык и постигнет письмена, которыми она написана. А написана она на языке математики…».

Роджер Бэкон говорил, что «тот, кто не знает математики, не может узнать никакой другой науки и даже не может обнаружить своего невежества».

Николая Ивановича Лобачевского справедливо сравнивали с Колумбом – открывателем новых земель, и с Коперником, изменившим взгляды его современников на вселенную. Создатель неевклидовой геометрии был не только талантливым учёным, но и замечательным педагогом. После первого года ректорства Лобачевский произнёс речь «О важнейших предметах воспитания». Эту речь нельзя рассматривать как простую дань официальным требованиям. В этой речи новый ректор высказал свои подлинные взгляды на цели и значение воспитания и образования. Он говорил, что «недостаточно развивать у человека только ум, надо, чтобы шло гармоничное развитие всех сторон человеческой личности, что и даётся воспитанием…».

Задача воспитателей, по его мнению, - открыть гениального юношу, обогатить его познаниями, а далее дать ему свободу в его творчестве. Однако, «образование умственное» ещё не завершает воспитания, так как человек «ещё должен учиться уметь наслаждаться жизнию», для этого необходимо ещё воспитывать общую культуру и развивать эстетическое чувство. Он также понимает, что воспитание не должно подавлять в человеке его наклонностей, его страстей, его желаний: «Всё должно оставаться при нём: иначе исказим природу, будем её насиловать и повредим его благополучию».

Привлекая образ яблока, подтачиваемого червём, он требует от воспитателей оградить юношество от пороков, которые подобно червю сокращают жизнь. Обосновывает он и необходимость пробуждения с юных лет «любви к отечеству» и «истинного понятия о чести». В чувстве любви к ближнему Лобачевский видит основу общественной природы человека, возможность его нравственного воспитания. Нравственность, как полагает Лобачевский, лучше воспитывать не рассуждениями, а с помощью живых примеров. Автор этого замечательного памятника педагогической мысли подчёркивал общественную роль образования, он стремился увлечь студента патриотическим идеалом учёного-гражданина, который «высокими познаниями составляет честь и славу своего отечества».

Задумывается Николай Иванович и о том, чему обязаны «своими блистательными успехами в последнее время математические и физические науки, слава нынешних веков, торжество ума человеческого». А обязаны они «без сомнения, искусственному языку своему, ибо как назвать все сии знаки исчислений, как не особенным, весьма сжатым языком, который, не утомляя напрасно нашего внимания, одной чертой выражает обширные понятия».

Творцы математики – это люди с удивительными судьбами, с сильными характерами, преодолевающие трудности и невзгоды поистине героически. Этот аспект истории математики, т. е. жизнеописание замечательных учёных, играет особую роль в становлении личности, в формировании нравственной позиции, в выборе жизненного пути молодыми людьми.

Творцы науки – это люди, отличающиеся исключительной целеустремлённостью, беззаветным служением истине, ответственностью перед человечеством за результаты своих исследований. Имена Фалеса, Пифагора, Евклида, Архимеда, Р. Декарта, П. Ферма, Б. Паскаля, Г. В. Лейбница, И. Ньютона, Л. Эйлера, Ж. Лагранжа, Г. Монжа, П. С. Лапласа, Ж. Фурье, К. Ф. Гаусса должны быть известны каждому культурному человеку. Знакомство с биографиями соотечественников-математиков, которые внесли большой вклад в сокровищницу мировой культуры, прославили нашу Родину, такими как Н. И. Лобачевский, М. В. Остроградский, В. Я. Буняковский, П. Л. Чебышёв, А. М. Ляпунов, А. А. Марков, Н. И. Лузин, П. С. Александров, Л. С. Понтрягин, А. Я. Хинчин, А. И. Колмогоров… способствуют воспитанию чувства гордости за отечество, уважения к прошлому.

В нашу задачу не входит дать систематическое изложение истории математики или обширные библиографические сведения о жизни и творчестве известных учёных-математиков. Ниже будут приведены лишь отрывочные факты из жизни этих знаменитых людей, с целью показать их замечательные личностные качества, широкий круг интересов и сильный характер.

Чтение книг о великих людях не только расширяет эрудицию, но и дает ещё сильную моральную поддержку, показывая примеры воли, твёрдости и упорства в достижении цели, мужества и стойкости в преодолении трудностей. Можно сказать, что каждый человек, стремящийся развивать свой интеллект, расширять свой кругозор, укреплять свои волевые качества, находит в жизнеописаниях замечательных людей немало поучительного, интересного, необходимого.

Часть первая. Пробуждающаяся наука

«Уважение к минувшему – вот черта, отличающая образованность от дикости».

А. С. Пушкин

Пифагор

(ок. 570-500 до н. э.) - основатель пифагорейской школы, предложившей свою модель математизированного плана строения вселенной. Величайшее достижение Пифагора в том, что он ввёл в математику доказательство.

Родился Пифагор

на острове Самос.

Нет сведений о том

каким он в детстве рос.

Плоды его трудов научных

Касались многих областей.

Он был политик и философ

Не чужд людских страстей.

Он греческий великий математик.

И множество легенд о нём знал свет.

Пифагорейской школы основатель,

Он о себе оставил в жизни след.

Познанье мира бесконечно

И жажду знаний нам не утолить.

Задачу их о квадратуре круга

Пока никто не смог решить.

Он утверждал, что космос органичен,

Создал основы он теории числа,

И предложил задачу непростую –

Задачу о «трисекции угла».

Он много путешествовал по свету,

Но не пришлось ему увидеть русский дуб.

Его вопрос всегда терзал планету:

А можно ли удвоить куб?

(Воронцова Т. В., г. Калуга)

Евклид

(около 300 г. до н. э.)

Однажды царь Птолемей I, листая книгу «Начал» Евклида, в которой были собраны и систематизированы все накопленные к тому времени сведения по геометрии, обратился к автору с вопросом нет ли более простых путей к овладению наукой геометрии. Евклид ответил, что в геометрии нет царских путей (в отличие от реальной ситуации в жизни, когда существовали две дороги одна для простого люда, а другая для царя).

Архимед

(287-212 до н. э.)

Говорят, что сиракузский царь Гиерон попросил, однажды, Архимеда проверить, не примешал ли золотых дел мастер серебра к золотой короне, изготовленной им по заказу царя. Архимед долго думал, как выполнить желание царя, пока, однажды, сидя в ванне, почувствовал, как по мере погружения в воду, его тело теряет некоторую долю веса. На основе открытого им закона, Архимед мог легко определить есть ли в золоте короны примесь серебра.

Как известно, Архимеду принадлежат слова: «дайте мне точку опоры и я сдвину Землю». Это было сказано по поводу строительства по приказу Гиерона великолепного трёхмачтового корабля, который, однако, рабочие не могли спустить на воду, так тяжёл был этот корабль. Архимед легко выполнил это с помощью системы блоков, установленных на суше в некотором отдалении от корабля.

Франсуа Виет

(1540-1603)

Виет был по образованию и специальности юристом, он отличался любовью к точным наукам и способностями к математике. Будучи совсем молодым офицером, он путём математических рассуждений нашёл ключ к шифру, которым пользовался испанский король Филипп I I при переписке. Благодаря этому французы могли расшифровать все секретные испанские документы. Шифр состоял из 500 символов, и король Филипп I I был совершенно уверен, что никто в мире не сумеет расшифровать все секретные испанские документы. Когда он узнал, что французы читают его переписку, обратился к римскому папе с жалобой на то, что французы прибегают к колдовству в борьбе с ним.

Тихо Браге

(1546-1601)

Отец Браге, по странным понятиям своего времени, не хотел даже учить своего сына латинскому языку. Дядя Браге по матери, без ведома родителей, поместил своего племянника в школу, где начали быстро развиваться его способности. Солнечное затмение 1560 г., в котором главные фазы почти точно происходили по предсказаниям календаря, привело молодого ученика в восторг и решило его судьбу. В 14 лет послали Тихо Браге в Лейпциг для приобретения поверхностных знаний, которые считались тогда достаточными для любой государственной службы. Там, тайно от своего гувернёра, и против желания своих благородных родителей, Тихо начал учиться математике и астрономии. Книги и инструменты покупал он на деньги, которые давали ему на удовольствия.

Благодаря щедрости Фридриха II, Дания увидела обсерваторию, открытую для наблюдений со всех сторон горизонта и названную Уранибургом. Тихо работал в ней непрерывно 17 лет. Он женился на красивой крестьянке, Христине; родственники противились этому браку, потому что он унижал их дворянство; но надо было повиноваться воле короля. По смерти Фридриха 2 дворяне, раздражённые против Браге за его измену их сословию, за его успехи и огромную славу, лишили его пансиона, а обсерваторию доходов. В Уранибурге была лаборатория, в которой Тихо приготовлял лекарства для бедных бесплатно: за это прогневались врачи и также начали кричать против Тихо. Таким образом, знаменитый астроном вынужден был оставить Уранибург и переселиться с семейством в Германию.

На портрете Тихо всякий заметит какую-то уродливость. Во время своего второго путешествия по Германии Тихо поссорился с одним из своих соотечественников за геометрическую теорему. За ссорой последовала дуэль, на которой астроном лишился большей части своего носа. Чтобы помочь этому горю, Тихо велел сделать восковой нос, и его-то живописец нарисовал со всей верностью.

Повинуясь истине, мы (Араго) с сожалением упоминаем, что человек, принесший великую пользу наукам, не мог бороться против предрассудков своего века; он верил астрологии и алхимии.

Галилео Галилей

(1564-1642)

Движенья нет, сказал мудрец брадатый.

Другой смолчал и стал пред ним ходить.

Сильнее бы не смог он возразить;

Хвалили все ответ замысловатый.

Но, господа, забавный случай сей

Другой пример на память мне приводит:

Ведь каждый день пред нами солнце ходит,

Но всё же прав упрямый Галилей.

А. С. Пушкин

Наблюдательный Галилей. Говорят, что наблюдательность Галилея открылась в церкви, где он увидел люстру, привешенную к своду и качания которой показались ему одновременными при больших и малых размахах или амплитудах. Видевшие в этом, действительном или мнимом, наблюдении начало открытий Гюйгенса, утверждали, что времена качаний люстры замечал Галилей по своему пульсу.

Галилей и Пизанская башня. Ко времени профессорства Галилея в Пизе относятся его исследования о падении тела и открытие законов, по которым тяжесть действует на все естественные тела, причём упоминают, что Бенедетти (профессор Галилея в Падуе) открыл те же законы прежде Галилея, между прочим и то, «что в пустоте все тела падают с одной и той же скоростью». Но почему забывают, что это мнение находилось уже в стихах Лукреция? «И так все тела, что неравного веса, должны проходить пустоту с одной скоростью и тяжёлые атомы никогда не могут упасть на лёгкие». (Лукр. кн. 2) Свои блестящие умозаключения Галилей подтвердил опытами, произведёнными с наклонённой башни в Пизе.

Галилей как изобретатель подзорной трубы

«Для меня тот выше всех учёных, кто собственным размышлением, а не случайно, дойдёт до устройства подзорной трубы».

Гюйгенс. « Диоптрика».

Галилей находился ещё в Падуе, когда в 1609 году распространилась новость об изобретении в Голландии снаряда, способного приближать отдалённые предметы.

Галилей тотчас воспроизвёл его, обратил на небо и сделал открытия, которые никогда не выйдут из памяти науки. Галилей описывает это так: «Мой способ исследования был следующий. Снаряд, строение которого я хотел отгадать, составлялся из одного или многих стёкол. Он не мог состоять из одного стекла, потому что фигура его должна быть или вогнутая, или выпуклая или плоская… Но последняя форма не переменяет предметов; стекло вогнутое их уменьшает, выпуклое – увеличивает, но делает неясными. И так ни одно стекло не может быть употреблено отдельно… я сделал опыт над соединением двух стёкол, одного выпуклого, а другого вогнутого, и увидел, что оно приводит к желаемой цели. Таков был ход моих рассуждений, и опыт подтвердил их истину».

Великий герцог Тосканский оказал уважение изобретателю подзорной трубы, сделав его первым математиком и философом герцога. Польстившись этим титулом, Галилей принял роковое намерение оставить Падую, где он наслаждался полной свободой мнений, и возвратиться на родину, находившуюся под неограниченным влиянием духовенства.

В руках инквизиции. К «Разговорам» Галилея, в которых он объявляет себя защитником Коперника, приложен эпиграф: «Во всех суждениях остерегайтесь своих предрассудков». «Разговоры» были приняты с общим одобрением; от этого враги философа дошли до крайнего раздражения. Они потребовали его в Рим и семидесятилетний Галилей по определению инквизиторов был осуждён на заключение в тюрьму и должен был отречься на коленях от своего еретического учения и доносить инквизиции о всех тех, которые будут ему следовать. Рассказывают, что после отречения Галилей встал, топнул ногой и сказал в полголоса: и всё-таки она движется. Но Араго считает невероятным, чтобы нравственно-измученный старец решился на такой неблагоразумный поступок, и ему непонятно, каким образом Галилей, доказывавший движение Земли со всей силою своего ума, сказал в своё оправдание: «доказывая, я покорялся желанию отличиться остроумием и предположения ложные считал вероятными». Джордано Бруно показал более твёрдости: готовясь взойти на костёр, он сказал: «Подписывая моё осуждение от имени Бога милосердного, вы должны были дрожать от страха больше, нежели я, идущий на костёр».

Иоганн Кеплер

(1571-1630)

Кеплер как астроном должен был составлять гороскопы для придворных. Неутомимый поиск законов движения планет, которые бы подтверждались наблюдениями, увенчался успехом. Три знаменитых закона были открыты Кеплером.

Охота на ведьм. Тётку матери Кеплера сожгли как ведьму на том основании, что её пациенты, которых она лечила, выздоравливали. Мать Кеплера была обвинена в том, что она, выучившись колдовству у сожжённой своей тётки, околдовала многих, часто беседует с дьяволом, никогда не плачет, истребляет соседних свиней, на которых разъезжает по ночам, наконец, никогда не глядит в глаза тем, с кем разговаривает. Последнее доказательство считалось несомненным доказательством, что старуха была истинная колдунья. Бедный астроном Кеплер хлопотал, хлопотал и выхлопотал только то, что переменил определения суда. Решили, чтобы палач напугал старуху, разложив перед ней орудия пытки и объяснив их действие и постепенно возрастающие мучения. Палач исполнил своё дело исправно; но старуху не поколебали никакие угрозы. Мать Кеплера освободили.

Рене Декарт

(1596-1650)

Декарт долго колебался в выборе состояния; иногда он склонялся к авторству, но – странное дело – оно казалось ему неприличным благородству его семейства. Наконец независимость показалась ему высшим благом; он вступил в качестве волонтёра в армию Морица Нассауского. Находясь в гарнизоне Бреды, в один день он подошёл к толпе, читавшей объявление на фламандском языке; в объявление был вызов на решение одной геометрической задачи. В толпе находился профессор математики Бекман, который по просьбе Рене перевёл объявление. На другой день молодой волонтёр явился к профессору со своим решением задачи. Вот начало дружеской связи между Бекманом и Декартом.

Ещё в четырнадцатилетнем возрасте он начал подозревать, что «гуманитарные» науки (того времени), которые им преподают, являются относительно бесплодными для человечества и не представляют собой той силы, которая позволила бы людям контролировать окружающий мир и управлять своей собственной судьбой. В праздности гарнизонной службы Декарт занимался колоссальным проектом: преобразовать всю философию. Беспрестанное напряжение ума расстроило его мозг: по ночам представлялись ему видения; на другой день он старался объяснить их и почти впал в помешательство. Во время одного из таких видений он дал обед сходить на поклонение Богоматери Лоретской.

Декарт учился медицине и хвалился, что сделал такие успехи в этой науке, что может продлить свою жизнь на сто лет. Однако, откликнувшись на приглашение ко двору королевы Христины (Швеция), которая хотела, чтобы Декарт посещал её в пять часов утра для разговоров о предмете учёности, заболел воспалением в груди и умер в возрасте 53 лет. Климат недолго позволил исполнять ему эту трудную обязанность.

Декарту мы обязаны основанием аналитической геометрии и алгебры, он первым ввёл в математику знаки плюс и минус для обозначения положительных и отрицательных величин, обозначение степени х2 и знак ∞ для обозначения бесконечно большой величины. В физике Декарт открыл законы отражения и деформации волн и объяснил причины появления радуги. При этом он известен больше как великий философ, а не как математик.

Пьер Ферма

(1601-1665)

Пьер Ферма – французский математик, юрист по профессии. Математика была его хобби, которому он посвящал свободное от остальных занятий время. В наследство от величайшего математика П. Ферма (1608 — 1665) человечеству, в частности, осталась проблема, кото­рая сейчас называется "Большая теорема Ферма" (также "Великая", "Последняя", "Знаменитая" и т.д.), утверждающая, что не существует отличных от нуля целых чисел х, у и z, для которых имеет место ра­венство хп + упп, п>2.

При n=2 такие числа существуют; например, х=3, у=4, z=5 и все пифагоровы тройки чисел. В бумагах Ферма было найдено доказательство этой теоремы при n=4. Что касается общего случая, то Ферма лишь написал на полях книги Диофанта "Арифметика", что он нашел "поистине замечательное доказательство" этого утверждения, но "поля слишком малы, чтобы его уместить".

Простота формулировки проблемы, описанная ин­трига привлекала внимание многих математиков. На протяжении более чем трех веков были обнаружены вполне элементарные доказательства только самого Ферма для n=4 и одного частного случая (так назы­ваемом первый случай теоремы Ферма) для некото­рых простых чисел n. Все остальные полученные ре­зультаты требовали серьезного математического ап­парата. Вот наиболее важные моменты в попытках штурма теоремы Ферма:

1768 г. — Л. Эйлер доказал теорему для n=3;

1823 г. — А. Лежандр опубликовал свои результаты и результаты, полученные Софи Жермен, для первого случая теоремы Ферма (т.е. когда n — простое и когда ни одно из чисел х, у, z не делится на n);

1825 г. — Л. Дирихле и А. Лежандр опубликовали полное решение для n=5;

1839 г. — Г. Ламе дал доказательство для случая n=7 и, тем самым, для всех n, кратных 7 и неделимых на 3 и 5 (сюда включается случай n=14, который раньше при помощи искусственного приема получил Л. Дирихле, но который не распространялся на случай n=7);

1858 г. — Э. Куммер получил доказательство для n=37, 59 и 67. Это подвело итог его собственных исследований (на тот момент) и всех предшественни­ков, который означал, что для всех n<100 теорема Ферма была доказана. Позднее Куммер и Вандивер довели этот результат до n<4003. Ферматисты, обыкновенные люди которые пытаются доказать эту теорему ещё не знают, что теорема эта в 1995 году усилиями А Уайлза и Р. Тейлора была строго доказана при п>2, при существенной опоре на предыдущие труды К. Рибе и других учёных. причём доказательство содержит 150 страниц отнюдь не элементарных рассуждений.

Блез Паскаль

(1623-1662)

В историю естествознания Паскаль вошёл как великий физик и математик, один из создателей математического анализа, проективной геометрии, теории вероятностей, вычислительной техники, гидростатики.

Выдающиеся писатели мира (Стендаль, Л. Н. Толстой, И. С. Тургенев, Ф. М. Достоевский и др.) считали его одним из самых замечательных писателей. В год своей смерти Л. Н. Толстой писал: «…Никогда ещё никто не подчёркивал того, что подчёркивал Паскаль… Но какая глубина, какая ясность – какое величие!.. Какой своеобразный, сильный, дерзкий и могучий язык!..»

Отец Блеза запретил заниматься ему математикой, боясь, что юный гений может перенапрячь свой мозг. Запрещение заниматься математикой только разожгло любопытство мальчика. В 12 лет юный Блез сделал первое открытие – обнаружил, что сумма углов треугольника такая же, как сумма двух углов стола. В 16 лет он изложил не менее 400 предложений о конических сечениях в «Трактате о конических сечениях». В возрасте 18 лет он изобрёл и сделал первую в истории вычислительную машину.

Исаак Ньютон

(1642-1727)

О Ньютоне слышали все, и все знают, что он был великим физиком. О том, что Ньютон величайший математик, создатель дифференциального и интегрального исчисления знают немногие.

Ньютон в детстве. На двенадцатом году поместили Ньютона в пансион Кларка-аптекаря. Ньютон, уже прославившийся, сам рассказывал, что сначала он был невнимательный и считался последним в своём классе. Но один из его буйных товарищей ударил его кулаком в живот; чтобы отомстить за обиду и чувствительную боль, ленивый ученик решился опередить обидчика, начал учиться и в короткое время сделался первым учеником пансиона.

Говорят, что Ньютон весьма редко участвовал в шумных играх товарищей и в часы отдыха занимался устройством моделей различных машин, между которыми упоминают о водяных часах, о повозке-самокате и ветряной мельнице. В эту последнюю модель была посажена мышь, которую Ньютон назвал мельником, потому что она управляла механизмом и съедала муку. Инструменты для делания моделей Ньютон покупал на свои небольшие денежки, скапливая их со строжайшей бережливостью. Упоминают ещё, что Ньютон спускал змей с фонарём, и жители ближайших деревень считали его за комету.

Желание учиться.

«Философы, хвалящиеся своей мудростью, не должны жестоко осуждать дочь астрономии, питающую свою мать. Действительно не многие бы стали заниматься астрономией, если бы люди не надеялись выучиться читать на небе будущее».

Кеплер.

Когда мать Ньютона овдовела во второй раз, она вызвала его домой. Чтобы приучить к хозяйству, каждую субботу посылали его на рынок с одним старым служителем; там он должен был продавать произведения фермы и покупать всё нужное для семейства. Однако же будущий великий учёный во всём полагался на старого служителя, предоставляя ему хлопотать о продаже и покупке, а сам читал старые книги, по которым учился в пансионе Кларка. Часто он не доезжал до города и, усевшись на дороге у дерева или под плетнём, предавался своим размышлениям и ожидал возвращения своего товарища.

Мать скоро убедилась, что сын её не может быть полезен для фермы и, не желая противиться его призванию, она отослала его опять в пансион, откуда через несколько месяцев перешёл он в Кембридж.

Прежде всего, Ньютон начал учиться математике, и – странное дело – для того, чтобы узнать, справедливы или ложны правила астрологии.

Ньютон и политика. В1688 г. университет в благодарность своему члену, учёная слава которого начинала уже распространяться в Европе, избрал его депутатом в парламент. В продолжение 1688 и 1689 г. Ньютон ревностно исполнял новые свои обязанности; но с 1690 по 1695 ревность его охладела, и вероятно потому, что ему надоели и сделались неприятными интриги партий. Впрочем, вся его парламентская служба не отличалась наружным блеском; уверяют, что он в нижней палате говорил только один раз, приказав швейцару затворить окно, из которого дул сквозной ветер на оратора или президента палаты.



Скачать документ

Похожие документы:

  1. Исторический экскурс в учение об умственной отсталости Причины умственной отсталости

    Документ
    В монографии представлены результаты комплексной диагностики и коррекции детей, подростков и молодых людей с умственной отсталостью. Особое внимание уделяется социализации и интеграции этих лиц в общество.
  2. Х педагогических журналов пятнадцать лет назад обсуждались проблемы взаимодействия массового образования и образования лиц с недостатками в развитии (инвалидов)

    Документ
    Рекомендовано Учебно-методическим объединением вузов Российской Федерации по педагогическому образованию в качестве учебного пособия для студентов педагогических вузов
  3. Дети с умственной отсталостью представляют собой одну из самых многочисленных групп детей с ограниченными возможностями здоровья

    Документ
    Дети с умственной отсталостью представляют собой одну из самых многочисленных групп детей с ограниченными возможностями здоровья. Понятием «умственная отсталость» объединены многочисленные и разно­образные формы патологии, проявляющиеся
  4. План. Введение стр. Причины и виды нарушений интеллектуального развития: «умственная отсталость»

    Реферат
    Умственная отсталость, недоразвитие интеллекта или в более широком смысле – нижняя часть спектра распределения интеллекта в популяции. Умственная отсталость не является отдельным заболеванием или особым состоянием, скорее это общее
  5. Эб итинский институт повышения квалификации работников образования

    Монография
    Григорьева О.Б. Национально-региональные особенности развития системы специального образования Забайкалья: аксиологический подход: монография. – Чита: ЧИПКРО, 2005.

Другие похожие документы..