Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Про затвердження Порядку ведення обліку дітей, які можуть бути усиновлені, осіб, які бажають усиновити дитину, та здійснення нагляду за дотриманням п...полностью>>
'Реферат'
Щукін Є.О., Дрожанова О.М., Патлайчук О.В. Методичні вказівки для проведення занять з курсу "Філософія" (1-й навчальний модуль). – Миколаїв...полностью>>
'Документ'
і у зв'язку з викладеним зобов'язується: а) дбайливо ...полностью>>
'Закон'
Страхування - це вид цивільно-правових відносин щодо захисту майнових інтересів фізичних осіб та юридичних осіб у разі настання певних подій (страхов...полностью>>

Доклад на тему «Сознание и искусственный интеллект»

Главная > Доклад
Сохрани ссылку в одной из сетей:

Волгоградский государственный университет

Доклад на тему

«Сознание и искусственный интеллект»

На протяжении нескольких предыду­щих десятилетий компьютерные технологии развивались семимильными шагами. Более того, нет никаких сомнений в том, что и бу­дущее сулит нам новые грандиозные успе­хи в повышении быстродействия и объема памяти, а также новые конструктивные ре­шения компьютерной логики. Сегодняшние компьютеры завтра покажутся нам таки­ми же медленными и примитивными, как механические калькуляторы прошлого. В та­ком стремительном развитии есть что-то по­чти пугающее. Уже сейчас машины способ­ны решать различные задачи, ранее являв­шиеся исключительной прерогативой чело­веческого интеллекта. И решать их со скоро­стью и точностью, во много раз превосходя­щими человеческие способности. Мы давно свыклись с существованием устройств, пре­восходящих наши физические возможности. И это не вызывает у нас внутреннего дис­комфорта. Наоборот, нам более чем ком­фортно, когда автомобиль несет нас в пять раз быстрее, чем лучший в мире бегун. Или когда с помощью таких устройств мы копа­ем ямы или сносим непригодные конструк­ции — с эффективностью, которую не разо­вьет и отряд из нескольких дюжин добрых молодцев. Еще больше нам импонируют ма­шины, с помощью которых у нас появляется возможность делать то, что нам ранее было попросту недоступно физически, например, подняться в небо и всего через несколько ча­сов приземлиться на другом берегу океана.

Эти машины не задевают нашего тщесла­вия. Но вот способность мыслить всегда бы­ла прерогативой человека. В конце концов, именно этой способности мы обязаны тому, что человеку удалось преодолеть его фи­зические ограничения и встать в развитии на ступеньку выше над другими живыми существами. А если когда-нибудь машины превзойдут нас там, где, по нашему мнению, нам нет равных — не получится ли так, что мы отдадим пальму первенства своим же собственным творениям?

Можно ли считать, что механическое устройство в принципе способно мыслить, или даже испытывать определенные чув­ства? Этот вопрос не нов, но с появлени­ем современных компьютерных технологий он приобрел новое значение. Смысл вопро­са глубоко философский. Что значит — ду­мать или чувствовать? Что есть сознание? Су­ществует ли оно объективно? И если да, то в какой степени он функционально зави­симо от физических структур, с которыми его ассоциируют? Может ли оно существо­вать независимо от этих структур? Или оно есть лишь продукт деятельности физичес­кой структуры определенного вида? В любом случае — должны ли подходящие структу­ры быть обязательно биологическими (мозг) или, возможно, этими структурами могут быть и электронные устройства? Подчиня­ется ли разум законам физики?

Очертив круг вопросов, приступим, собственно к проблемам искусственного интеллекта. Представите себе, что появилась новая модель очень мощного компьютера, вычислительные возможности которого много превосходят возможности человека. При этом разработчики уверяют, что он корректно запрограммирован, обладает огромным количеством данных, и, главное, разработчики утверждают, что он может мыслить. Как нам понять, можно ли верить производителю или нет? Можно принять, что компьютер мыслит, если он ведет, так же как и человек в момент раздумий. Естественно, мы от него не можем потребовать, чтобы он расхаживал по комнате, как мог бы себя вести размышляющий о чем-то человек. Более того, даже не важно, чтобы компьютер внешне напоминал человека: эти качества не имеют отношения к назначению компьютера. Главное – это способность выдавать схожие с человеческими ответы на любой вопрос. Этот подход отстаивается в статье Алана Тьюринга «Вычислительные машины и интеллект».

В этой статье впервые бы­ла предложена идея того, что сейчас назы­вают тестом Тьюринга. Тест предназначал­ся для ответа на вопрос о том, можно ли резонно утверждать, что машина думает. Пусть утверждается, что некоторый ком­пьютер (подобный тому, который продают производители из описания выше) в дей­ствительности думает. Для проведения теста Тьюринга компьютер вместе с человеком добровольцем скрывают от глаз опрашивающей. Опрашивающая должна попытаться определить, где компью­тер, а где человек, задавая им двоим проб­ные вопросы. Вопросы, а еще важнее — ответы, которые она получает, передаются в безличной форме, например, печатаются на клавиатуре и высвечиваются на экране. Единственная информация, которой будет располагать опрашивающая — это то, что она сама сможет выяснить в процессе такого сеанса вопросов и ответов. Опрашиваемый человек честно отвечает на все вопросы, пы­таясь убедить женщину, что он и есть живое существо; компьютер, однако, запрограмми­рован таким образом, чтобы обмануть опра­шивающую и убедить ее в том, что человек на самом деле он. Если в серии подобных тестов опрашивающая окажется неспособ­ной «вычислить» компьютер никаким по­следовательным образом, то считается, что компьютер прошел данный тест.

Однако, не могу не привести замечательное рассуждение философа Джона Серля (John Searle), известное под названием "Китайская комната", которое указывает на недостаток теста Тьюринга. Оно звучит так.

«Представьте себе, - писал Серль, — что я нахожусь в комнате с корзинами, заполненными табличками с китайскими иероглифами. Я не знаю китайский. Для меня все эти иероглифы в буквальном смысле китайская грамота. Но у меня есть подробная инструкция на английском языке, описывающая взаимосвязи между этими символами. Мне не нужно пони­мать значение китайских иероглифов, чтобы производить с ними действия, описанные в инструкции.

Вне этой комнаты находится группа людей, понимающих китайский. Они пе­редают мне таблички с иероглифами, я же на основании инструкции отдаю им другие таблички с иероглифами. Этих людей можно назвать «программиста­ми», меня — «компьютером», а корзины с табличками — «базой данных». Передан­ные мне таблички назовем «вопросами», переданные мною - «ответами».

А теперь представьте, что инструкция составлена таким образом, что мои «отве­ты» неотличимы от тех, которые бы дал человек, свободно владеющий китайским. В этом случае я прохожу тест Тьюринга. Од­нако мы-то с вами знаем, что я не понимаю китайский язык и никогда не смогу его вы­учить таким способом, потому что не суще­ствует способа, с помощью которого я мог бы понять значение этих иероглифов».4

Так, по Серлю, устроен и компьютер, оперирующий символами, но не понима­ющий их значения. Из синтаксиса невоз­можно вывести семантику. А значит, не­возможно и построить мыслящую маши­ну.

Термин «интеллект» (intelligence) происходит от латинского «intellectus», что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект (ИИ, он же artificial intelligence — AI в зарубежной литературе) обычно трактуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Система, наделенная интеллектом, является универсальным средством решения широкого круга задач (в том числе неформализованных), для которых нет стандартных, заранее известных методов решения. Таким образом, мы можем определить интеллект и как универсальный сверхалгоритм, который способен создавать алгоритмы решения конкретных задач. Запомним это определение.

Теперь рассмотрим задачу весьма общего характера (из­вестную как проблема алгоритмической раз­решимости), которая была поставлена вели­ким немецким математиком Давидом Гиль­бертом частично в 1900 году на Париж­ском Конгрессе математиков (так называемая «десятая проблема Гильберта»), и бо­лее полно — на международном конгрес­се 1928 года в Болонье. Проблема, поста­вленная Гильбертом, состояла ни больше, ни меньше как в отыскании универсаль­ной алгоритмической процедуры для реше­ния математических задач или, вернее, от­вета на вопрос о принципиальной возмож­ности такой процедуры. Кроме того, Гиль­берт сформулировал программу, целью ко­торой было построение математики на не­сокрушимом фундаменте из аксиом и пра­вил вывода, установленных раз и навсегда. Сама идея этой программы была опровергнута порази­тельной теоремой, доказанной в 1931 го­ду блестящим австрийским логиком Кур­том Геделем.

Приведем упрощенное доказательство теоремы Геделя.

Часть доказательства, приведенного Геделем, содержало некий очень сложный и детализированный кусок. В «сложной» части подробно показа­но, каким образом частные правила вывода и использование различных аксиом фор­мальной процедуры могут быть представле­ны в виде арифметических операций. Для этого представления нам необходимо будет най­ти какой-нибудь удобный способ нумера­ции утверждений при помощи натуральных чисел. Один из способов мог бы заключать­ся в том, чтобы использовать своего рода «алфавитный» порядок для строчек симво­лов формальной системы, имеющих одина­ковую длину, упорядочить заранее строчки по длине. Это называется лексикографиче­ским порядком. Нас же должны в осо­бенности интересовать функции исчисления высказываний одной переменной. Пусть -я (из про­нумерованных выбранным способом строк символов) такая функция от аргумента обозначается

Мы можем допустить, чтобы наша нумера­ция по желанию была несколько «либераль­на» в отношении синтаксически некоррект­ных выражений. Если синтаксиче­ски корректно, то оно будет представлять из себя некоторое совершенно определен­ное арифметическое выражение, в котором фигурируют два натуральных числа и . Каков будет конкретный вид этого выраже­ния — зависит от особенностей системы нумерации, которую мы выбрали. Но эти детали рассматриваются в «сложной» части и сейчас нас не касаются. Пусть

будет -м доказательством. (Опять же мы можем использовать «либеральную нуме­рацию», когда для некоторых значений выражение не является синтаксически корректным и, тем самым, не доказывает никакую теорему.)

А теперь рассмотрим следующую функ­цию исчисления высказываний от натурально­го числа :

доказывает

В выражении в квадратных скобках частич­но присутствуют слова, но, тем не менее, это — абсолютно точно определенное вы­ражение. Оно говорит о том, что доказа­тельство номер х является доказательством утверждения , примененного к са­мому . Находящийся за скобками кван­тор существования с отрицанием позволяет исключить из рассмотрения одну из пере­менных («не существует такого х, что...»), приводя нас в конечном счете к арифме­тической функции исчисления высказываний, зависящей только от . В целом данное вы­ражение утверждает, что не существует дока­зательства . Предположим, что оно оформлено синтаксически корректным образом (даже если некорректно — поскольку тогда выражение было бы истин­ным за невозможностью существования до­казательства синтаксически некорректного утверждения). На самом деле, в результате сделанного нами перевода на язык арифме­тики, написанное выше будет в действитель­ности неким арифметическим выражением, включающим натуральное число (тогда как в квадратных скобках окажется четко определенное арифметическое выражение, связывающее два натуральных числа х и ). Конечно, возможность представления этого выражения в арифметическом виде далеко не очевидна, но она существует. Рассужде­ния, приводящие к этому заключению, со­ставляют наиболее трудную задачу в «слож­ной» части доказательства Геделя. Как и ра­нее, непосредственный вид арифметического выражения будет зависеть от способа ну­мерации и в еще большей степени от кон­кретной структуры аксиом и правил вывода, принятых в нашей системе. Поскольку все это входит в «сложную» часть доказатель­ства, то в данном случае нас не интересует.

Мы пронумеровали все функции исчи­сления высказываний, зависящие от одной переменной, поэтому той, которую мы ввели выше, также должен быть приписан номер. Пусть этот номер будет . Наша функция будет в таком случае -й в общем списке. То есть

доказывает

Теперь исследуем эту функцию при опреде­ленном значении: . Мы получаем:

доказывает .

Данное утверждение является аб­солютно точно определенным (синтаксиче­ски корректным) арифметическим выраже­нием. Может ли оно быть доказано в рам­ках нашей формальной системы? А его от­рицание ~ — имеет ли оно такое доказательство? Ответ в обоих случаях бу­дет отрицательный. Мы можем убедиться в этом путем исследования смысла, кото­рый лежит в основании процедуры Геде­ля. Хотя является просто арифмети­ческим выражением, последнее было по­строено нами таким образом, что напи­санное в левой части утверждает следую­щее: «внутри системы не существует дока­зательства ». Если мы были аккуратны в определении аксиом и процедур выво­да, и не ошиблись при нумерации, то то­гда в рамках системы такого доказательства найти невозможно. Если же доказательство существует, то значение утверждения, со­держащегося в — о том, что такого доказательства нет, — будет ложным, а вме­сте с ним будет ложным и арифметичес­кое выражение, отвечающее. Но наша формальная система не может быть постро­ена настолько плохо, чтобы включать в себя ложные утверждения, которые могут быть доказаны! Таким образом, в действительно­сти, доказательство быть не может. Но это в точности то самое, о чем гово­рит нам . То, что утверждает , обязано, следовательно, быть верным, а по­этому должно быть верным как ариф­метическое выражение. Значит, мы нашли истинное утверждение, которое недоказуемо в рамках системы'.

А как насчет ~ ? Из предыдущих рассуждений видно, что доказательство это­му утверждению внутри системы мы найти не сможем. Мы только что установили, что ~ должно быть ложным (ибо является истинным), а мы, по определению, не имеем возможности доказывать ложные утверждения в рамках системы! Таким обра­зом, ни , ни ~ недоказуемы в на­шей формальной системе, что и составляет теорему Геделя.

Интуитивная догадка, которая позволи­ла нам установить, что утверждение Геделя является на самом деле истинным, представляет собой разновидность общей процедуры, известной логикам как принцип рефлексии: посредством нее, размышляя над смыслом системы аксиом и правил выво­да и убеждаясь в их способности приводить к математическим истинам, можно преобра­зовывать интуитивные представления в но­вые математические выражения, не выводи­мые из тех самых аксиом и правил вывода. То, как нами была выше установлена истин­ность , как раз базировалось на при­менении этого принципа.

Другой принцип рефлексии, имеющий отношение к доказа­тельству Геделя (хотя и не упомянутый вы­ше), опирается на вывод новых математиче­ских истин исходя из представления о том, что система аксиом, которую мы полагаем априори адекватной для получения матема­тических истин, является непротиворечивой. Если использовать их аккуратно, то они позволяют вырваться за жесткие рамки любой формальной систе­мы и получить новые, основанные на инту­итивных догадках, представления, которые ранее казались недостижимыми. В матема­тической литературе могло бы быть множе­ство приемлемых результатов, чье доказа­тельство требует «прозрений», далеко выхо­дящих за рамки исходных правил и аксиом стандартной формальной системы арифме­тики. Все это свидетельствует о том, что деятельность ума, приводящая математиков к суждениям об истине, не опирается не­посредственно на некоторую определенную формальную систему. Мы убедились в ис­тинности утверждения Геделя , хотя мы и не можем вывести ее из аксиом си­стемы. Этот тип «видения», используемый в принципе рефлексии, требует математи­ческой интуиции, которая не является ре­зультатом чисто алгоритмических операций, представимых в виде некоторой формаль­ной математической системы.

В этом заключается суть довода, пред­ложенного Лукасом в 1961 в поддержку точки зрения, согласно которой деятельность мозга не может быть полностью алгорит­мической, против которого, однако, время от времени выдвигались различные контр­доводы. В связи с этой дискус­сией я должен подчеркнуть, что термины «алгоритм» и «алгоритмический» относятся к чему угодно, что может быть (достовер­но) смоделировано на компьютере общего назначения. Сюда включается, конечно, как «параллельная обработка», так и нейросети (или «машины с переменной структурой связей»), «эвристика», «обучение» (где все­гда заранее задается определенный фик­сированный шаблон, по которому машина должна обучаться), а также взаимодействие с внешним миром (которое может модели­роваться посредством входной ленты маши­ны Тьюринга). Наиболее серьезным из этих контраргументов является следующий: что­бы действительно убедиться в истинности утверждения , нам нужно знать, ка­кой именно алгоритм использует математик, и при этом быть уверенным в правомерно­сти его использования в качестве средства достижения математической истины.

Если в голове у математика выпол­няется очень сложный алгоритм, то у нас не будет возможности узнать, что он из се­бя представляет, и поэтому мы не сможем сконструировать для него утверждение геделевского типа, не говоря уже об уверенности в обоснованности его применения.

Такого типа возражения часто выдви­гаются против утверждений подобных тому, которое я привел в начале этого раздела, а именно, что теорема Геделя свидетель­ствует о неалгоритмическом характере на­ших математических суждений. Но сам я не нахожу это возражение слишком убеди­тельным. Предположим на мгновение, что способы, которыми математики формируют осознанные суждения о математической ис­тине действительно являются алгоритмиче­скими. Попробуем, используя теорему Геде­ля, доказать абсурдность этого утверждения от противного.

Прежде всего мы должны рассмотреть возможность того, что разные математики используют неэквивалентные алгоритмы для суждения об истинности того или иного утверждения. Однако — и это одно из наибо­лее поразительных свойств математики (мо­жет быть, почти единственной в этом отно­шении среди всех прочих наук) — истин­ность математических утверждений может быть установлена посредством абстрактных рассуждений! Математические рассуждения, которые убеждают одного математика, с не­обходимостью убедят и другого (при усло­вии, что в них нет ошибок и суть нигде не упущена). Это относится и к утвержде­ниям типа геделевского. Если первый ма­тематик готов согласиться с тем, что все аксиомы и операции некоторой формаль­ной системы всегда приводят только к ис­тинным утверждениям, то он также должен быть готов принять в качестве истинного и соответствующее этой системе геделевское утверждение. Точно то же самое произойдет и со вторым математиком. Таким образом, рассуждения, устанавливающие математи­ческую истину, являются передаваемыми.

Отсюда следует, что мы, говоря об ал­горитмах, имеем в виду не какие-то не­ясные разномастные построения, которые, возможно, рождаются и бродят в голове ка­ждого отдельного математика, а одну универ­сально применяемую формальную систему, которая эквивалентна всем возможным ал­горитмам, использующимся математиками для суждений о математической истине. Од­нако мы никак не можем знать, является ли эта гипотетическая «универсальная» систе­ма той, которая используется математиками для установления истинности. Ибо в этом случае мы могли бы построить для нее геде­левское утверждение, и знали бы наверняка, что оно математически истинно. Следова­тельно, мы приходим к заключению, что алгоритм, который математики используют для определения математической истины, настолько сложен или невразумителен, что даже правомерность его применения навсе­гда останется для нас под вопросом.

Но это бросает вызов самой сущно­сти математики! Основополагающим прин­ципом всего нашего математического насле­дия и образования является непоколебимая решимость не склоняться перед авторите­том каких-то неясных правил, понять кото­рые мы не надеемся. Мы должны видеть — по крайней мере, в принципе — что каждый этап рассуждений может быть сведен к чему-то простому и очевидному. Математическая истина не есть некая устрашающе сложная догма, обоснованность которой находится вне границ нашего понимания — она стро­ится из подобных простых и очевидных со­ставляющих; и когда они становятся ясны и понятны нам, с их истинностью соглаша­ются все без исключения.

Математическая истина — это не то, что мы устанавливаем просто за счет использования алгоритма. Кроме того, на­ше сознание — это решающая составляющая в нашем понимании математической исти­ны. Мы должны «видеть» истинность мате­матических рассуждений, чтобы убедиться в их обоснованности. Это «видение» — са­мая суть сознания. Оно должно присутство­вать везде, где мы непосредственно постига­ем математическую истину. Когда мы убе­ждаемся в справедливости теоремы Геделя, мы не только «видим» ее, но еще и устана­вливаем неалгоритмичность природы самого процесса «видения».

Возникает вопрос: а откуда, собственно, берется неалгоритмическая деятельность нашего сознания? Существует гипотеза сэра Роджера Пенроуза [1], что это следствие некоторых квантовых процессов в нашем мозге. Квантовая система живет по своим внутренним - сложным, но точно предсказуемым - законам до тех пор, пока не вступит в контакт с классической системой. Этот контакт называется измерением, а то состояние, в котором система (например, электрон) оказывается после этого - результатом измерения. Состояние описывается так называемой пси-функцией. Так вот, во время "квантовой жизни" эта пси-функция плавно и красиво эволюционирует (в абстрактном математическом пространстве), самым невероятным образом изменяет свою форму, но увидеть этого мы не можем! Если же мы поймаем электрон и посадим его под микроскоп, то увидим там одну из ничтожно малого количества заранее известных пси-функций! И даже точно рассчитав всю эволюцию электрона в его "квантовой жизни", мы можем узнать только вероятность того, что измерение даст нам ту или иную из разрешенных к наблюдению пси-функций."Превращение" некоей невидимой пси-функции в реально наблюдаемую называется редукцией, или схлопыванием. Обозначим это превращение буквой R.

Главная физическая идея, которой придерживается автор, выдвигалась в той или иной форме многими. Она состоит в том, что R можно рассматривать как реальное физическое явление, связанное с выбором той или иной конфигурации пространства-времени, в котором находится наша квантовая система. Более того, редукция может происходить по двум причинам. Одна из них - взаимодействие со средой, с "классическими объектами". Когда это так, редукция носит вероятностный характер. Так вот, основная гипотеза в том, что существует еще и такое явление, как объективная редукция, OR, прерывающая "квантовую жизнь" любой системы независимо ни от каких измерений, если в ней слишком много частиц, или накопилось слишком много энергии, или она просто слишком долго не схлопывалась. Эта самая OR как раз и предполагается невычислимой. В обычных условиях, когда квантовая система очень быстро вступает во взаимодействие со "средой", R и OR практически неотличимы друг от друга. Но если квантовая система изолирована от среды и долго живет в так называемом сцепленном состоянии, называемом еще когерентной квантовой суперпозицией, в ней происходит OR, результат которой алгоритмически непредсказуем.

Итак, кандидатура на роль невычислимого ингредиента найдена - точнее, названа. Но при чем здесь сознание? Да и где в мозгу могут происходить квантовые процессы, влияющие на работу нейронов?

Нейрофизиологи уже давно задумывались над возможными квантовыми механизмами, связанными с работой мозга. В 1987 году вышла пионерская работа Стюарта Хамероффа (основателя нанобиологии) - книга "Ultimate Computing: Biomolecular Consciousness and NanoTechnology", где речь шла о своеобразных вычислениях, происходящих в так называемых микротрубочках цитоскелета. Микротрубочки - важная часть "скелета" клетки. Это полые цилиндрические трубочки диаметром примерно 25 нм. Они состоят из субъединиц - тубулинов. Тубулины - это молекулы-димеры, то есть они могут существовать по крайней мере в двух пространственных конфигурациях (конформациях). Для того чтобы произошло "переключение" из одной конформации в другую, достаточно чтобы единственный электрон "переехал с места на место". Поверхность микротрубочки составлена из тубулинов, расположенных в узлах правильной решетки. Конфигурация каждого тубулина зависит от конфигурации его соседей. Прямо-таки компьютер, изготовленный самой природой!

Микротрубочки есть во всех клетках всех организмов, за исключением некоторых бактерий и водорослей. Хамерофф предположил, что микротрубочки нейронов играют важную роль в работе мозга. В них могут возникать "вычисления" - последовательные перестройки конфигурации тубулинов, нечто вроде того, что происходит в игре "Жизнь". Эти вычисления, в свою очередь, влияют на передачу сигналов между нейронами.

Идеи Пенроуза и Хамероффа укладываются в общую картину следующим образом. Есть (косвенные) экспериментальные свидетельства, а также некие физические соображения в пользу того, что в микротрубочках тубулины могут образовывать большие когерентные квантовые системы. Другими словами, большая совокупность тубулинов может некоторое время жить "квантовой жизнью", а потом переходить в классическое состояние с помощью невычислимой процедуры OR. Вот этот переход и есть "момент сознания", или, как пишут авторы, используя терминологию английского философа Уайтхеда, "элементарный фактор чувственного опыта". Поток таких событий и образует субъективно ощущаемый "поток сознания".



Скачать документ

Похожие документы:

  1. Электронная культура, искусственный интеллект, проблематика сознания – факторы модернизации России

    Документ
    Очевидно, что в XXI веке мировое сообщество вступило в эпоху электронной культуры (э-культуры). По крайней мере, общим местом современных дискуссий по поводу стратегий развития информационного общества стало положение о новом качестве
  2. Проблема искусственного интеллекта является сейчас одной из самых злободневных

    Документ
    Проблема искусственного интеллекта является сейчас одной из самых злободневных. Ей занимаются ученые различных специальностей: кибернетики, лингвисты, психологи, философы, математики, инженеры.
  3. Harvard Business Review Russia. Открыла конференцию Татьяна Владимировна Черниговская, ученый, психо- и нейролингвист, эксперт по искусственному интеллекту, рассказ

    Рассказ
    19 марта состоялась Третья конференция TEDxVorobyovy-Gory, посвященная теме «Космос». Авторитетные спикеры из самых разных отраслей науки, бизнеса и творчества собрались на площадке Мемориального музея космонавтики всего на несколько
  4. Доклады и материалы

    Доклад
    Высшее образование для XXI века : III Международная научная конференция, МосГУ, 18–20 октября 2006 г. : доклады и материалы. Вып. 1 / под общ. ред. И.
  5. Генезис и самоорганизация полифункциональной системы и нравственного содержания сознания авторефера т диссертации на соискание ученой степени доктора философских наук

    Автореферат
    Защита состоится 26 марта 2009 г. в 12.00 на заседании диссертационного совета Д 212.041.02 по защите диссертаций на соискание ученой степени доктора философских наук, доктора культурологии при ГОУ ВПО «Вятский государственный гуманитарный

Другие похожие документы..