Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Осенью 1612 года войско Литовского гетмана Ходкевича было разбито в жестоких боях и отброшено от русской столицы. 26 октября сдался в Москве и польск...полностью>>
'Документ'
Система языка за один век коренным образом измениться не может. Но постепенные преобразования в русском языке все же происходят. Изменилась речевая п...полностью>>
'Документ'
Целью освоения дисциплины Методика обучения и воспитания является формирование знаний, умений и навыков по проектированию и реализации учебно-воспита...полностью>>
'Автореферат диссертации'
Защита диссертации состоится «_20_» _сентября_ 2006 г. на заседании диссертационного совета Д 212.141.06 при Московском Государственном Техническом У...полностью>>

Книга посвящена анализу производственных инвестиций (долгосрочных капиталовложений в производственный процесс) и прежде всего измерению их эффективности, сравнению производственных проектов и ряду смежных проблем.

Главная > Книга
Сохрани ссылку в одной из сетей:

§1.5. Определение доходности на основе потока платежей

В § 1.2 мельком была затронута проблема определения размера процентной ставки по остальным параметрам потока платежей. Вернемся к этой проблеме применительно к определению доходности по основным инвестиционным схемам. Остановимся на трех из них:

  • мгновенные (разовые) инвестиции, отдача в виде регулярного или нерегулярного потока платежей;

  • инвестиции в финансовый инструмент (облигацию), постоянная отдача (купонный доход) и возврат номинала в конце срока;

  • инвестиции в финансовый инструмент (долговое обязательство, кредит), последовательное обслуживание долга (равные суммы погашения основного долга и периодическая выплата процентов).

Во второй и третьей схемах предусматриваются два источника дохода: доход от прироста капитала в виде разности между суммой номинала инструмента и его ценой (capital gain) и начисленные проценты.

Условия перечисленных схем можно кратко записать как

где Dразмер инвестиций;

Rt, Rчлены потока поступлений;

Kцена (или курс) финансового инструмента;

dразмер разового погашения долга;

It, — сумма процентов за период.

Приведем уравнения эквивалентности, с помощью которых определяются показатели доходности (в виде процентных ставок) соответствующих инвестиционных схем. Для первой схемы имеем:

(1.30)

где дисконтные множители определяются по искомой процентной ставке j.

ПРИМЕР 14

Сумма мгновенных инвестиций — 100, срок — 5 лет, поступления — в конце каждого года. Как видно из расчета, представленного в нижеследующей таблице, эквивалентность инвестиций и отдачи имеет место в случае, когда дисконтирование производится по ставке 21,46%. Последний показатель характеризует доходность финансовой операции.

t

Rt

vt

Rtvt

1

20

0,82332

16,46633

2

30

0,67785

20,33549

3

60

0,55808

33,48509

4

40

0,45948

18,37921

5

30

0,37830

11,34893

Итого

100,01500

Если отдача постоянна, то вместо (1.30) имеем

D = Ran;j. (1.31)

Величина у рассчитывается по коэффициенту приведения постоянной ренты:

Заметим, что положительное и отличное от нуля значение показателя доходности имеет место в случае, когда an;j < п . Соответственно R/D > п.

Вторая из упомянутых инвестиционных схем пригодна для инвестиций в облигации9 с периодическими выплатами постоянного купонного дохода и погашением обязательства в конце срока по номиналу. Для этих условий получим следующее уравнение эквивалентности при условии, что купоны погашаются ежегодно:

P = Ran;j+Nvn, (1.32)

где R = Ni;

iуровень купонного дохода;

Р — цена облигации;

N — номинал.

Если под Р подразумевается курс облигации (P = K), то N= 100.

Для оценки доходности можно применить и приближенную формулу

(1.33)

В формуле (1.33) средний годовой доход от облигации соотносится с ее ценой, средней за весь срок. За простоту расчета, впрочем, приходится платить потерей точности оценки.

ПРИМЕР 15

Облигация со сроком 5 лет, проценты по которой выплачиваются один раз в год по норме 8%, куплена по курсу 97. Запишем уравнение эквивалентности (1.32) и разделим обе его стороны на 100:

0,97 = (1 + j)-5 + 0,08 a5;j.

С помощью линейной интерполяции находим j = 8,77%. Для проверки рассчитаем курс на основе полученной ставки. Находим

Как видим, расчетный курс весьма близок к рыночному 97. Приближенное решение по (1.33) дает

что соответствует рыночному курсу 0,74. Погрешность заметно выше, чем при использовании линейной интерполяции.

Уравнение эквивалентности для третьей схемы (ежегодные выплаты сумм обслуживания долга без льготного периода) имеет вид:

(1.34)

где — годовой размер погашения долга;

Dt остаток долга на начало года t, D1 = D, Dt = Dt-1- d.

Для быстрой ориентации в сложившейся ситуации иногда прибегают к приближенному методу оценки доходности как суммы двух составляющих:

где hдоходность от разности номинала и цены;

i — процентная ставка по условиям финансового инструмента.

При определении первого элемента этой суммы фактический процесс последовательного погашения долга условно заменяется разовым погашением со средним сроком выплаты. Из равенства

K = DvT

следует, что

где Т — средний срок.

Средний срок в данной ситуации определяется элементарно: Т =п/2 . Наличие льготного периода (без погашения основного долга) увеличивает средний срок на соответствующую величину.

ПРИМЕР 16

Финансовый инструмент (номинал 100) куплен за 75. Погашение долга в течение 5 лет равными платежами, проценты по ставке 10% годовых. Какова финансовая эффективность операции?

Находим . Таким образом,

Точная величина доходности равна 23,11%. Расчет современной стоимости поступлений по этой ставке представлен в таблице, в которой символом Rt обозначена ежегодная сумма обслуживания долга.

t

Dt

Rt

vt

Rtvt

1

100

30

0,909091

24,368450

2

80

28

0,826446

18,474440

3

60

26

0,751315

13,934560

4

40

24

0,683013

10,448110

5

20

22

0,620921

7,779578

Итого

75,005150

С увеличением отклонения K от 100 растет погрешность оценки. Аналогичное можно утверждать и по поводу влияния процентной ставки и срока погашения долга.

§ 1.6. Современная стоимость потока платежей с учетом риска

Количественный анализ потока платежей, в том числе расчет современной стоимости, обычно предполагает фиксированность размеров всех его членов и безусловность их выплат (см. расчетные формулы в § 1.2 и 1.3). В инвестиционных проектах, однако, часто сталкиваются со случаями, когда размер члена потока платежей является случайной переменной (размер заранее точно неизвестен) и задается в виде некоторого диапазона значений или среднего значения, например предполагаемый или ожидаемый уровень добычи минерального сырья, выпуск продукции при условии, что ее производство зависит от погодных условий или возможностей снабжения сырьем и т. д. Иногда проект предусматривает условия, согласно которым члены потока платежей (затраты и поступления) не являются безусловными, а лишь возможны (ожидаемы) с той или иной вероятностью. В частном случае такой поток представляет собой вероятностную или условную ренту. С подобного рода рентами встречаются и в страховании. В упомянутых случаях методики расчета современной стоимости и наращенной суммы по-

тока платежей нуждаются в существенных дополнениях. Эти методики выходят за рамки "классической" финансовой математики. Кратко рассмотрим две из возможных постановок задачи, зависящих от вида имеющейся информации о потоках платежей.

Члены потока платежей задаются статистическими распределениями. Пусть имеется поток платежей, выплачиваемых в моменты t = 1, ..., п. Каждый член потока является случайной величиной с заданным распределением. Вид и параметры распределения устанавливаются на основе имеющейся статистики или, что ближе к действительности, задаются экспертным путем. Таким образом, в целом поток платежей описывается последовательными распределениями случайных величин Rt.

Причем, чем больше срок платежа, тем, очевидно, больше амплитуда колебаний в размерах платежей (рис. 1.4). Обобщающее распределение показателя современной стоимости можно получить, суммируя частные распределения с соответствующим их дисконтированием. Распределения членов потока могут быть одинаковыми, что, разумеется, удобнее для расчетов, хотя и менее правдоподобно.

Для каждого из частных распределений нетрудно найти соответствующие средние . Величина современной стоимости потока, состоящего из средних, по определению, равна

(1.35)

где пtинтервал от начала потока платежей до момента выплаты t-го члена потока.

Найденная по формуле (1.35) величина представляет собой среднюю распределения современной стоимости потока платежей, каждый из которых представлен в виде распределения. В частном случае, когда суммируемые распределения одинаковы на протяжении всего срока (соответственно одинаковы и их средние) и, кроме того, временные интервалы между платежами одинаковы, получим:

Фактическое значение современной стоимости потока платежей будет отличаться от расчетной средней . Различие будет тем больше, чем выше дисперсия распределения величины А. Задача определения такой дисперсии в общем случае достаточно сложна. В связи с этим найдем, используя некоторые положения математической статистики, дисперсию суммарного распределения, но только для одного частного случая, анализ которого делает наглядным существо проблемы.

Допустим, что поток платежей описывается последовательными одинаковыми нормальными распределениями. Соответственно их средние и дисперсии одинаковы. Поскольку А представляет собой сумму дисконтированных величин (в данном случае Rvt), то дисперсия каждого слагаемого этой суммы составит в силу известного свойства дисперсии величину D(Rvt) = D(R)v2t. Обозначим дисперсию частного распределения как D = D(R).

При условии независимости последовательных членов потока платежей (условие, следует заметить, сильно упрощающее действительное положение дел, однако позволяющее представить основные зависимости более наглядно) дисперсию суммы дисконтированных платежей (D0) можно оценить как

(1.36)

Отсюда стандартное отклонение определяется как

(1.37) где и — стандартные отклонения распределения А и R.

Сумма под корнем представляет собой своеобразный коэффициент приведения. Обозначим его dn;i:

(1.38)

Полученная по формуле (1.36) дисперсия современной стоимости потока представляет собой нижнюю границу для величины дисперсии, так как здесь не учитывается возможная положительная корреляция между последовательными членами потока платежей. Как известно, такая корреляция слагаемых увеличивает дисперсию суммы.

Предположение о том, что частные распределения одинаковы, а еще лучше, являются нормальными, существенно упрощает анализ и позволяет решить одну важную задачу, а именно оценить с заданной вероятностью границы, в которых находится действительная величина современной стоимости потока платежей. Такие границы определяются как

где z — нормированное отклонение от средней (см. табл. 5 Приложения).

ПРИМЕР 17

Эксперты определили, что члены потока поступлений (рента постнумерандо) можно описать нормальными распределениями с параметрами 10 (средняя величина) и 3 (стандартное отклонение). Иными словами, полный диапазон значений каждого члена потока платежей укладывается в интервал, примерно равный 10 ± 3 х 3 . Срок поступлений — 5 лет. Дисконтирование производится по годовой ставке 15%. Допустим, что указанные распределения независимые, тогда

Границы диапазона современной стоимости такого потока платежей определяются выражением 32,52 ± z x 2,334.

Если вероятность, с которой желательно установить границы интервала, принята на уровне 90%, то z = 1,65 и искомые границы составят 28,72; 36,37. Уменьшение надежности вывода, естественно, сокращает этот интервал. Так, для вероятности 75% (z = 1,15) получим соответственно 29,84; 35,20.

Современная стоимость с учетом вероятностей выплат членов потока. В общей постановке задача выглядит следующим образом. Пусть выплата каждого члена потока платежей Rt не безусловна, а имеет некоторую вероятность рt. Современная стоимость такого потока составит

(1.39)

Для практических целей данное выражение, очевидно, следует конкретизировать с учетом особенностей потока платежей в инвестиционном процессе или страховании. Например, пусть объектом является поток, состоящий из выплат премий (взносов страхователя) при долгосрочном страховании имущества. Обобщенную сумму премий в виде современной ее стоимости найдем, рассуждая следующим образом. Если страховое событие (например, гибель имущества) произойдет на первом году страхования, то страховщик получит премию только один раз; если это событие случится на втором году страхования, то премия будет выплачена два раза, и т. д. Допустим, что вероятности наступления страховых событий в течение года одинаковы и равны q. Если годовая премия пренумерандо равна Р, то математическое ожидание премии при дисконтировании ежегодных выплат за весь срок страхования составит:

где v — дисконтный множитель.

Полученный показатель Е(А) представляет собой современную стоимость страховых премий с учетом вероятности их выплат. Аналогичным путем можно разрабатывать формулы для оценки величины современной стоимости потоков платежей и для инвестиционных процессов, если учет вероятностей является необходимым.



Скачать документ

Похожие документы:

  1. Книга "Стратегический менеджмент"

    Книга
    Первое издание книги А. Томпсона и А. Стрикленда “Стратегический менеджмент” увидело свет в 1980г., когда идеи стратегического менеджмента прочно вошли в практику управления многих ведущих компаний мира.
  2. Книга посвящена решению многочисленных проблем, нако­пившихся как в теории, так и практике американского управле­ния к концу XX века.

    Книга
    Книга посвящена решению многочисленных проблем, нако­пившихся как в теории, так и практике американского управле­ния к концу XX века. Четко сформулированы управлен­ческие рецепты повышения качества, конкурентоспособности, общей эффективности
  3. Проекта (гранта) (2)

    Конкурс
    При реализации проекта использованы средства государственной поддержки, выделенные в качестве гранта Институтом общественного проектирования по итогам I Конкурса «Проблемы развития современного российского общества» в соответствии
  4. Книга написана ярким, эмоциональным и образным языком, отличается оригинальным и доступным изложением сугубо экономических сведений, неожиданной интерпретацией известных фактов. Многие события и концепции, о кото

    Книга
    Необычная по жанру и композиции, «Анатомия финансового пузыря» детально рассказывает о многих известных финансовых пузырях, имевших место хронологически – с XVI века до нашего времени, географически – от Японии и Кувейта до США; в ней
  5. Расколотая цивилизация. Наличествующие предпосылки и возможные последствия постэкономической революции

    Документ
    Образ расколовшейся цивилизации — это несомненный элемент современного мироощущения, и особенно, наверное, у нас, в России. В чем истоки такого мироощущения? На этот вопрос можно поискать ответы в предлагаемой вниманию читателя новой книге В.

Другие похожие документы..