Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Решение'
ФГУП «Главное управление специального строительства по территории Дальневосточного федерального округа» при Федеральногом агентстве специального строи...полностью>>
'Документ'
Актуальность исследований. Актуальной проблемой металлогении многих золоторудных районов является изучение пространственно-временных и генетических с...полностью>>
'Методические указания'
Работа может быть использована агрономами-плодоводами при: апробации плодово-ягодных культур, изучении курса плодоводства, оформлении курсовых и дипло...полностью>>
'Доклад'
Муниципального дошкольного образовательного учреждения «Детский сад № 49 «Улыбка» общеразвивающего вида с приоритетным осуществлением деятельности по ...полностью>>

«Алгоритм криптографического преобразования гост 28147-89»

Главная > Литература
Сохрани ссылку в одной из сетей:

Алгоритм шифрования ГОСТ 28147-89, его использование и программная реализация для компьютеров платформы Intel x86.

Часть I. Описание и обсуждение алгоритмов стандарта.

Автор: Андрей Винокуров
Источник: /crypto
Опубликовано: 15.01.2003
Исправлено: 04.05.2005
Версия текста: 1.1.1

Описание алгоритма.

Термины и обозначения.
Логика построения шифра и структура ключевой информации ГОСТа.
Основной шаг криптопреобразования.
Базовые циклы криптографических преобразований.
Основные режимы шифрования.
Простая замена.
Гаммирование.
Гаммирование с обратной связью.
Выработка имитовставки к массиву данных.

Обсуждение криптографических алгоритмов ГОСТа.

Криптографическая стойкость ГОСТа.
Замечания по архитектуре ГОСТа.
Требования к качеству ключевой информации и источники ключей.
Вариации на тему ГОСТа
Нестандартное использование стандарта.

Литература

Описание алгоритма.

Термины и обозначения.

Описание стандарта шифрования Российской Федерации содержится в очень интересном документе, озаглавленном «Алгоритм криптографического преобразования ГОСТ 28147-89» [1]. То, что в его названии вместо термина «шифрование» фигурирует более общее понятие « криптографическое преобразование », вовсе не случайно. Помимо нескольких тесно связанных между собой процедур шифрования, в документе описан один построенный на общих принципах с ними алгоритм выработки имитовставки . Последняя является не чем иным, как криптографической контрольной комбинацией, то есть кодом, вырабатываемым из исходных данных с использованием секретного ключа с целью имитозащиты , или защиты данных от внесения в них несанкционированных изменений.

На различных шагах алгоритмов ГОСТа данные, которыми они оперируют, интерпретируются и используются различным образом. В некоторых случаях элементы данных обрабатываются как массивы независимых битов, в других случаях – как целое число без знака, в третьих – как имеющий структуру сложный элемент, состоящий из нескольких более простых элементов. Поэтому во избежание путаницы следует договориться об используемых обозначениях.

Элементы данных в данной статье обозначаются заглавными латинскими буквами с наклонным начертанием (например, X). Через |X| обозначается размер элемента данных X в битах. Таким образом, если интерпретировать элемент данных X как целое неотрицательное число, можно записать следующее неравенство:.

Если элемент данных состоит из нескольких элементов меньшего размера, то этот факт обозначается следующим образом: X=(X 0,X 1,…,Xn –1)=X 0||X 1||…||Xn –1. Процедура объединения нескольких элементов данных в один называется конкатенацией данных и обозначается символом «||». Естественно, для размеров элементов данных должно выполняться следующее соотношение: |X|=|X 0|+|X 1|+…+|Xn -1|. При задании сложных элементов данных и операции конкатенации составляющие элементы данных перечисляются в порядке возрастания старшинства. Иными словами, если интерпретировать составной элемент и все входящие в него элементы данных как целые числа без знака, то можно записать следующее равенство:

В алгоритме элемент данных может интерпретироваться как массив отдельных битов, в этом случае биты обозначаем той же самой буквой, что и массив, но в строчном варианте, как показано на следующем примере:

X=(x 0,x 1,…,xn –1)=x 0+21·x 1+…+2 n–1·xn –1.

Таким образом, если вы обратили внимание, для ГОСТа принята т.н. «little-endian» нумерация разрядов, т.е. внутри многоразрядных слов данных отдельные двоичные разряды и их группы с меньшими номерами являются менее значимыми. Об этом прямо говорится в пункте 1.3 стандарта: «При сложении и циклическом сдвиге двоичных векторов старшими разрядами считаются разряды накопителей с большими номерами». Далее, пункты стандарта 1.4, 2.1.1 и другие предписывают начинать заполнение данными регистров-накопителей виртуального шифрующего устройства с младших, т.е. менее значимых разрядов. Точно такой же порядок нумерации принят в микропроцессорной архитектуре Intel x86, именно поэтому при программной реализации шифра на данной архитектуре никаких дополнительных перестановок разрядов внутри слов данных не требуется.

Если над элементами данных выполняется некоторая операция, имеющая логический смысл, то предполагается, что данная операция выполняется над соответствующими битами элементов. Иными словами AB=(a 0b 0,a 1b 1,…,an –1bn –1), где n=|A|=|B|, а символом «•» обозначается произвольная бинарная логическая операция; как правило, имеется в виду операция исключающего или , она же – операция суммирования по модулю 2:

Логика построения шифра и структура ключевой информации ГОСТа.

Если внимательно изучить оригинал ГОСТ 28147–89, можно заметить, что в нем содержится описание алгоритмов нескольких уровней. На самом верхнем находятся практические алгоритмы, предназначенные для шифрования массивов данных и выработки для них имитовставки. Все они опираются на три алгоритма низшего уровня, называемые в тексте ГОСТа циклами . Эти фундаментальные алгоритмы упоминаются в данной статье как базовые циклы , чтобы отличать их от всех прочих циклов. Они имеют следующие названия и обозначения, последние приведены в скобках и смысл их будет объяснен позже:

  • цикл зашифрования (32-З);

  • цикл расшифрования (32-Р);

  • цикл выработки имитовставки (16-З).

В свою очередь, каждый из базовых циклов представляет собой многократное повторение одной единственной процедуры, называемой для определенности далее в настоящей работе основным шагом криптопреобразования .

Таким образом, чтобы разобраться в ГОСТе, надо понять три следующие вещи:

  • что такое основной шаг криптопреобразования;

  • как из основных шагов складываются базовые циклы;

  • как из трех базовых циклов складываются все практические алгоритмы ГОСТа.

Прежде чем перейти к изучению этих вопросов, следует поговорить о ключевой информации, используемой алгоритмами ГОСТа. В соответствии с принципом Кирхгофа, которому удовлетворяют все современные известные широкой общественности шифры, именно ее секретность обеспечивает секретность зашифрованного сообщения. В ГОСТе ключевая информация состоит из двух структур данных. Помимо собственно ключа , необходимого для всех шифров, она содержит еще и таблицу замен . Ниже приведены основные характеристики ключевых структур ГОСТа.

  • Ключ является массивом из восьми 32-битовых элементов кода, далее в настоящей работе он обозначается символом K: В ГОСТе элементы ключа используются как 32-разрядные целые числа без знака:. Таким образом, размер ключа составляет 32·8=256 бит или 32 байта.

  • Таблица замен является вектором, содержащим восемь узлов замены . Каждый узел замены, в свою очередь, является вектором, содержащим шестнадцать 4-битовых элементов замены, которые можно представить в виде целых чисел от 0 до 15, все элементы одного узла замены обязаны быть различными. Таким образом, таблица замен может быть представлена в виде матрицы размера 8x16 или 16x8, содержащей 4-битовые заменяющие значения. Для языков программирования, в которых двумерные массивы расположены в оперативной памяти по строкам, естественным является первый вариант (8x16), его-то мы и возьмем за основу. Тогда узлы замены будут строками таблицы замен. В настоящей статье таблица замен обозначается символом H: . Таким образом, общий объем таблицы замен равен: 8 узлов x 16 элементов/узел x 4 бита/элемент = 512 бит = 64 байта.

Основной шаг криптопреобразования.

Основной шаг криптопреобразования по своей сути является оператором, определяющим преобразование 64-битового блока данных. Дополнительным параметром этого оператора является 32-битовый блок, в качестве которого используется какой-либо элемент ключа. Схема алгоритма основного шага приведена на рисунке 1.


Рисунок 1. Схема основного шага криптопреобразования алгоритма ГОСТ 28147-89.

Ниже даны пояснения к алгоритму основного шага:

Шаг 0

Определяет исходные данные для основного шага криптопреобразования:

  • N – преобразуемый 64-битовый блок данных, в ходе выполнения шага его младшая (N 1) и старшая (N 2) части обрабатываются как отдельные 32-битовые целые числа без знака. Таким образом, можно записать N=(N 1,N 2).

  • X – 32-битовый элемент ключа;

Шаг 1

Сложение с ключом. Младшая половина преобразуемого блока складывается по модулю 232 с используемым на шаге элементом ключа, результат передается на следующий шаг;

Шаг 2

Поблочная замена. 32-битовое значение, полученное на предыдущем шаге, интерпретируется как массив из восьми 4-битовых блоков кода: S=(S 0, S 1, S 2, S 3, S 4, S 5, S 6, S 7), причем S 0 содержит 4 самых младших, а S 7 – 4 самых старших бита S.

Далее значение каждого из восьми блоков заменяется новым, которое выбирается по таблице замен следующим образом: значение блока Si меняется на Si -тый по порядку элемент (нумерация с нуля) i-того узла замены (т.е. i-той строки таблицы замен, нумерация также с нуля). Другими словами, в качестве замены для значения блока выбирается элемент из таблицы замен с номером строки, равным номеру заменяемого блока, и номером столбца, равным значению заменяемого блока как 4-битового целого неотрицательного числа. Отсюда становится понятным размер таблицы замен: число строк в ней равно числу 4-битовых элементов в 32-битовом блоке данных, то есть восьми, а число столбцов равно числу различных значений 4-битового блока данных, равному как известно 24, шестнадцати.

Шаг 3

Циклический сдвиг на 11 бит влево. Результат предыдущего шага сдвигается циклически на 11 бит в сторону старших разрядов и передается на следующий шаг. На схеме алгоритма символом обозначена функция циклического сдвига своего аргумента на 11 бит влево, т.е. в сторону старших разрядов.

Шаг 4

Побитовое сложение: значение, полученное на шаге 3, побитно складывается по модулю 2 со старшей половиной преобразуемого блока.

Шаг 5

Сдвиг по цепочке: младшая часть преобразуемого блока сдвигается на место старшей, а на ее место помещается результат выполнения предыдущего шага.

Шаг 6

Полученное значение преобразуемого блока возвращается как результат выполнения алгоритма основного шага криптопреобразования.

Базовые циклы криптографических преобразований.

Как отмечено в начале настоящей статьи, ГОСТ относится к классу блочных шифров, то есть единицей обработки информации в нем является блок данных. Следовательно, вполне логично ожидать, что в нем будут определены алгоритмы для криптографических преобразований, то есть для зашифрования, расшифрования и «учета» в контрольной комбинации одного блока данных. Именно эти алгоритмы и называются базовыми циклами ГОСТа, что подчеркивает их фундаментальное значение для построения этого шифра.

Базовые циклы построены из основных шагов криптографического преобразования, рассмотренного в предыдущем разделе. В процессе выполнения основного шага используется только один 32-битовый элемент ключа, в то время как ключ ГОСТа содержит восемь таких элементов. Следовательно, чтобы ключ был использован полностью, каждый из базовых циклов должен многократно выполнять основной шаг с различными его элементами. Вместе с тем кажется вполне естественным, что в каждом базовом цикле все элементы ключа должны быть использованы одинаковое число раз, по соображениям стойкости шифра это число должно быть больше одного.

Все сделанные выше предположения, опирающиеся просто на здравый смысл, оказались верными. Базовые циклы заключаются в многократном выполнении основного шага с использованием разных элементов ключа и отличаются друг от друга только числом повторения шага и порядком использования ключевых элементов. Ниже приведен этот порядок для различных циклов.

Цикл зашифрования 32-З:

K 0,K 1,K 2,K 3,K 4,K 5,K 6,K 7,K 0,K 1,K 2,K 3,K 4,K 5,K 6,K 7,K 0,K 1,K 2,K 3,K 4,K 5,K 6,K 7,K 7,K 6,K 5,K 4,K 3,K 2,K 1,K 0.


Рисунок 2а. Схема цикла зашифрования 32-З

Цикл расшифрования 32-Р:

K 0,K 1,K 2,K 3,K 4,K 5,K 6,K 7,K 7,K 6,K 5,K 4,K 3,K 2,K 1,K 0,K 7,K 6,K 5,K 4,K 3,K 2,K 1,K 0,K 7,K 6,K 5,K 4,K 3,K 2,K 1,K 0.


Рисунок 2б. Схема цикла расшифрования 32-Р

Цикл выработки имитовставки 16-З:

K 0,K 1,K 2,K 3,K 4,K 5,K 6,K 7,K 0,K 1,K 2,K 3,K 4,K 5,K 6,K 7.


Рисунок 2в. Схема цикла выработки имитовставки 16-З.

Каждый из циклов имеет собственное буквенно-цифровое обозначение, соответствующее шаблону «n-X», где первый элемент обозначения (n), задает число повторений основного шага в цикле, а второй элемент обозначения (X), буква, задает порядок зашифрования («З») или расшифрования («Р») в использовании ключевых элементов. Этот порядок нуждается в дополнительном пояснении:

Цикл расшифрования должен быть обратным циклу зашифрования, то есть последовательное применение этих двух циклов к произвольному блоку должно дать в итоге исходный блок, что отражается следующим соотношением: Ц 32-Р(Ц 32-З(T))=T, где T – произвольный 64-битовый блок данных, Ц X(T) – результат выполнения цикла X над блоком данных T. Для выполнения этого условия для алгоритмов, подобных ГОСТу, необходимо и достаточно, чтобы порядок использования ключевых элементов соответствующими циклами был взаимно обратным. В справедливости записанного условия для рассматриваемого случая легко убедиться, сравнив приведенные выше последовательности для циклов 32-З и 32-Р. Из сказанного вытекает одно интересное следствие: свойство цикла быть обратным другому циклу является взаимным, то есть цикл 32-З является обратным по отношению к циклу 32-Р. Другими словами, зашифрование блока данных теоретически может быть выполнено с помощью цикла расшифрования, в этом случае расшифрование блока данных должно быть выполнено циклом зашифрования. Из двух взаимно обратных циклов любой может быть использован для зашифрования, тогда второй должен быть использован для расшифрования данных, однако стандарт ГОСТ28147-89 закрепляет роли за циклами и не предоставляет пользователю права выбора в этом вопросе.

Цикл выработки имитовставки вдвое короче циклов шифрования, порядок использования ключевых элементов в нем такой же, как в первых 16 шагах цикла зашифрования, в чем нетрудно убедиться, рассмотрев приведенные выше последовательности, поэтому этот порядок в обозначении цикла кодируется той же самой буквой «З».

Схемы базовых циклов приведены на рисунках 2а-в. Каждый из них принимает в качестве аргумента и возвращает в качестве результата 64-битовый блок данных, обозначенный на схемах N. Символ Шаг(N,X) обозначает выполнение основного шага криптопреобразования для блока данных N с использованием ключевого элемента X. Между циклами шифрования и вычисления имитовставки есть еще одно отличие, не упомянутое выше: в конце базовых циклов шифрования старшая и младшая часть блока результата меняются местами, это необходимо для их взаимной обратимости.

Основные режимы шифрования.

ГОСТ 28147-89 предусматривает три следующих режима шифрования данных:

  • простая замена,

  • гаммирование,

  • гаммирование с обратной связью,

и один дополнительный режим выработки имитовставки.

В любом из этих режимов данные обрабатываются блоками по 64 бита, на которые разбивается массив, подвергаемый криптографическому преобразованию, именно поэтому ГОСТ относится к блочным шифрам. Однако в двух режимах гаммирования есть возможность обработки неполного блока данных размером меньше 8 байт, что существенно при шифровании массивов данных с произвольным размером, который может быть не кратным 8 байтам.

Прежде чем перейти к рассмотрению конкретных алгоритмов криптографических преобразований, необходимо пояснить обозначения, используемые на схемах в следующих разделах:

T о,T ш – массивы соответственно открытых и зашифрованных данных;

,i - тые по порядку 64-битовые блоки соответственно открытых и зашифрованных данных:, , последний блок может быть неполным: ;

n – число 64-битовых блоков в массиве данных;

Ц X – функция преобразования 64-битового блока данных по алгоритму базового цикла «X».

Теперь опишем основные режимы шифрования:

Простая замена.

Зашифрование в данном режиме заключается в применении цикла 32-З к блокам открытых данных, расшифрование – цикла 32-Р к блокам зашифрованных данных. Это наиболее простой из режимов, 64-битовые блоки данных обрабатываются в нем независимо друг от друга. Схемы алгоритмов зашифрования и расшифрования в режиме простой замены приведены на рисунках 3а и б соответственно, они тривиальны и не нуждаются в комментариях.


Рисунок. 3а. Алгоритм зашифрования данных в режиме простой замены


Рисунок. 3б. Алгоритм расшифрования данных в режиме простой замены

Размер массива открытых или зашифрованных данных, подвергающийся соответственно зашифрованию или расшифрованию, должен быть кратен 64 битам: | T о|=| T ш|=64· n , после выполнения операции размер полученного массива данных не изменяется.

Режим шифрования простой заменой имеет следующие особенности:

  • Так как блоки данных шифруются независимо друг от друга и от их позиции в массиве данных, при зашифровании двух одинаковых блоков открытого текста получаются одинаковые блоки шифртекста и наоборот. Отмеченное свойство позволит криптоаналитику сделать заключение о тождественности блоков исходных данных, если в массиве зашифрованных данных ему встретились идентичные блоки, что является недопустимым для серьезного шифра.

  • Если длина шифруемого массива данных не кратна 8 байтам или 64 битам, возникает проблема, чем и как дополнять последний неполный блок данных массива до полных 64 бит. Эта задача не так проста, как кажется на первый взгляд. Очевидные решения типа «дополнить неполный блок нулевыми битами» или, более обще, «дополнить неполный блок фиксированной комбинацией нулевых и единичных битов» могут при определенных условиях дать в руки криптоаналитика возможность методами перебора определить содержимое этого самого неполного блока, и этот факт означает снижение стойкости шифра. Кроме того, длина шифртекста при этом изменится, увеличившись до ближайшего целого, кратного 64 битам, что часто бывает нежелательным.

На первый взгляд, перечисленные выше особенности делают практически невозможным использование режима простой замены, ведь он может применяться только для шифрования массивов данных с размером кратным 64 битам, не содержащим повторяющихся 64-битовых блоков. Кажется, что для любых реальных данных гарантировать выполнение указанных условий невозможно. Это почти так, но есть одно очень важное исключение: вспомните, что размер ключа составляет 32 байта, а размер таблицы замен – 64 байта. Кроме того, наличие повторяющихся 8-байтовых блоков в ключе или таблице замен будет говорить об их весьма плохом качестве, поэтому в реальных ключевых элементах такого повторения быть не может. Таким образом, мы выяснили, что режим простой замены вполне подходит для шифрования ключевой информации, тем более, что прочие режимы для этой цели менее удобны, поскольку требуют наличия дополнительного синхронизирующего элемента данных – синхропосылки (см. следующий раздел). Наша догадка верна, ГОСТ предписывает использовать режим простой замены исключительно для шифрования ключевых данных.



Скачать документ

Похожие документы:

  1. «Криптографические системы защиты данных»

    Реферат
    С каждым днем технологии «шагают» вперед, большую часть работы люди стали возлагать на средства вычислительной техники. Информационные системы обрабатывают различную информацию.
  2. Реферат по дисциплине «информатика» на тему: «криптографические системы защиты данных»

    Реферат
    В реферате изложены основные принципы построения криптографических систем защиты данных и рассмотрены основные отличия между квантовой и аппаратной криптографией.
  3. Государственный стандарт союза сср системы обработки информации. Защита криптографическая алгоритм криптографического преобразования

    Документ
    Настоящий стандарт устанавливает единый алгоритм криптографического преобразования для систем обработки информации в сетях электронных вычислительных машин (ЭВМ), отдельных вычислительных комплексах и ЭВМ, который определяет правила
  4. I. Наименование выполняемых работ

    Техническое задание
    I. Наименование выполняемых работ: выполнение работ по проектированию комплексной системы защиты информации, циркулирующей в информационно-вычислительной сети мэрии г.
  5. Методические указания к выполнению лабораторных работ по дисциплине информационная безопасность для студентов факультета Гуманитарных наук, информатики и управления

    Методические указания
    Под защитой информации в информационных системах (ИС) понимается регулярное использование в них средств и методов, принятие мер и осуществление мероприятий с целью системного обеспечения требуемой надежности хранимой и обрабатываемой информации.

Другие похожие документы..