Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Конкурс'
Память. Человек не может жить только сиюминутным ускользающим мгновением. Стремясь в будущее, он бережно хранит воспоминание о минувшем Но каждый че...полностью>>
'Рабочая программа'
Курс «Управление качеством» предназначен для подготовки инженерных кадров, владеющих современными методами управления качеством на всех стадиях жизне...полностью>>
'Курсовой проект'
Курсовой проект требует тщательной подготовки и подбора материала. Собирается статистический материал, который отражает положение в исследуемой облас...полностью>>
'Статья'
Ответственный за выпуск: М.В. Петрова, ведущий специалист инновационно-методического отдела Управления образования Администрации городского округа Ст...полностью>>

М 74 Человек и ноосфера. М.: Мол гвардия, 1990. 351[1] с., ил

Главная > Документ
Сохрани ссылку в одной из сетей:

При описании явлений неживой природы функционалы [Wi] действительно всегда ранжированы, причем первое место занимают законы сохранения: ничто не

==67

может нарушить законы сохранения массы, импульса, энергии... Различные связи — голономные, неголономные и любые другие ограничения имеет смысл рассматривать лишь для систем, для которых законы сохранения выполнены. Среди всех таких ограничений особое место для открытых систем занимает принцип минимума роста энтропии или минимума диссипации энергии. Он как бы замыкает цепочку принципов отбора: если законы сохранения, кинематические и прочие ограничения еще не выделяют единственной траектории развития системы, то заключительный отбор производит принцип минимума диссипации. Вероятно, именно он играет решающую роль в появлении более или менее устойчивых неравновесных структур в общем процессе самоорганизации материи.

В рамках описанной схемы можно дать следующую интерпретацию процессов, протекающих в неживой природе. Тенденции к разрушению организации и развитию хаоса (повышению энтропии) препятствует ряд противоположных тенденций. Это прежде всего законы сохранения. Но не они одни препятствуют разрушению организации. Принцип минимума диссипации энергии не только отбирает из тех движений, которые допускаются законами физики (им не противоречат), наиболее «экономные», но и служит основой «метаболизма», то есть содействует процессу возникновения структур, способных концентрировать окружающую материальную субстанцию, понижая тем самым локальную энтропию. Так, в стохастической среде, способной порождать явления типа странного аттрактора, когда исходные малые различия состояний могут породить в последующем сколь угодно большие различия, в пространстве состояний возникают области, отвечающие локальным минимумам функционала, характеризующего рост энтропии. Эти области возможных состояний оказываются «областями притяжения» в силу принципа минимума диссипации. И в них складываются условия для возникновения локальных структур, чья квазиустойчивость определяется их способностью использовать энергию и вещество из окружающего пространства. Указанные выше локальные минимумы и определяют те каналы эволюции, о которых уже шла речь в предыдущей главе.

Картина, описанная для процессов, протекающих в неживом веществе, принципиально усложняется на уровне живой природы, ибо здесь появляется целеполага-

==68

ние — тенденция к самосохранению, стремление сохранить гомеостазис. Эта тенденция (не сводимая к законам физики) тоже может быть формализована совокупностью условий, каждое из которых допускает вариационную форму.

Ф,(Х) =WW, где /-1,2,5...

Однако по отношению к этим функционалам в отличие от функционалов Wi природа уже не дает правил для их автоматического ранжирования. В игру вступает новый фактор — естественный отбор. Значение функционалов Ф'\, определяющих гомеостазис в данных конкретных условиях обитания, различно с точки зрения обеспечения гомеостазиса. Для каждого живого существа возникает свой оптимальный способ поведения, то есть ранжирования функционалов, и каждое из них пытается его найти.

Естественный отбор закрепляет тех представителей, которым лучше других удается ранжировать приоритеты для сохранения гомеостазиса в данных конкретных условиях, другими словами, лучше приспособиться к внешней среде.

Все сказанное только что можно выразить и несколько иначе. Естественный отбор как бы сам формирует некоторый функционал и определяет его оптимальное значение, то есть наиболее выгодное поведение. При этом в отличие от функционала действия живое существо вовсе не обязательно должно реализовывать это оптимальное поведение. Однако чем ближе оно будет к этому оптимальному, тем лучше живое существо будет приспособлено к окружающей среде и тем больше у него шансов выжить в данных конкретных условиях.

Живая система, например популяция, существует во всегда изменяющейся внешней обстановке. Это значит, что непрерывно должен меняться и характер упорядоченности функционалов [Oi]. Таким образом, для любого живого существа, а тем более для живого мира, на множестве функционалов, определяющих гомеостазис того или иного вида, уже нет и не может быть однозначной раз и навсегда определенной упорядоченности, которая существует, как мы это видели, на множестве функционалов [Wi], то есть на множестве законов физики, которые никто нарушить не может.

Законы живого мира, не сводимые к законам физики,

==69

выполняются не столь жестоко, они могут нарушиться, но за их нарушение живое существо платит жизнью. В живом мире вступают в действие адаптационные механизмы, требующие непрерывной «переранжнровки» элементов множества функционалов [Ф;]. Живой организм, как это показал великий русский физиолог И. П. Павлов, приобретает систему рефлексов — условных и безусловных. Это и есть результат «установившейся» ранжировки, которая при изменившейся ситуации может оказаться трагичной.

Используя язык многокритериальной оптимизации, который был введен в этом параграфе, я могу сказать, что выработка рефлексов проводит необходимую ранжировку функционалов [(Dij и устанавливает алгоритмы их локальной оптимизации. (В теории управления системы, обладающие четким алгоритмом обратной связи, называются рефлексными.)

В этой главе я выделил два класса механизмов развития: адаптационные и бифуркационные. Выработка рефлексов — это результат действия адаптационных механизмов. Любое постепенное изменение тех или иных свойств развивающихся систем (в том числе правила поведения отдельных членов популяции), происходящее под действием естественного отбора, — это тоже результат действия подобных механизмов. И каждый раз такие механизмы отыскивают некоторый локальный минимум. (Этот факт позволяет дать еще одно определение адаптационных механизмов на языке теории исследования операций: механизмы, реализующие алгоритмы поиска локальных экстремумов без прогноза изменений внешней среды, то есть лишь по информации об окружающей обстановке, полученной в данный момент, мы и будем называть адаптационными.)

Ракурс, который нам дает теория исследования операций в изучении общего эволюционного процесса, позволяет по-новому увидеть и роль бифуркационных механизмов в развитии материи. Используя язык этой теории, мы могли бы сказать, что бифуркационные механизмы в отличие от механизмов адаптационных осуществляют нелокальную оптимизацию.

То, что начинает происходить в природе, когда вступает в действие бифуркационный механизм, чем-то похоже на ту ситуацию, в которой вычислитель, работая с диалоговой системой оптимизационных расчетов, время от времени при решении сложной задачи отступает от

К оглавлению

==70

использования локальных алгоритмов типа наискорейшего спуска.

Так он поступает всякий раз, когда используемый алгоритм перестает уже совершенствовать систему, когда его потенциальные возможности оказываются исчерпанными. В этом случае опытный вычислитель начинает использовать какой-либо неэффективный, но зато нелокальный метод поиска.

Изучение алгоритмов развития живых систем показывает, что здесь существенно изменяется и роль принципа минимума диссипации энергии по сравнению с его ролью в процессах развития неживой природы.

В самом деле, в живых системах уже не идет речь о роли энтропии — наоборот, возникают формы, обладающие способностью уменьшать локальную энтропию. Метаболизм — поглощение свободной энергии и вещества — становится основой развития живых существ. Из принципа, который действует лишь тогда, когда другие принципы отбора не выделяют единственной траектории развития процесса, он превращается в тенденцию, свойственную любой живой системе — тенденцию максимизировать локальное уменьшение энтропии за счет

метаболизма.

Исследования особенностей самоорганизации живой природы показывают, что вместе с усложнением организации живых систем возникают и определенные противоречия между их стремлением к сохранению гомеостазиса, стабильности и тенденцией максимизировать эффективность поглощения и использования внешней энергии и вещества.

По-видимому, всю историю развития жизни на Земле можно было бы изложить на языке, использующем противоборство различных тенденций. Не исключено, что разрешение противоречий между этими двумя тенденциями происходит по классическому образцу, установленному в теории исследования операций: спонтанно возникают те или иные свертки основных критериев, а естественный отбор загоняет систему в один из локальных экстремумов этого комбинированного критерия, характеризующего особенность той или иной локальной ниши. Во всяком случае, история антропогенеза показывает, что подобная гипотеза не лишена подобных

оснований.

Итак, эволюция живого мира может изучаться под углом зрения «поисков компромиссов»: наблюдаемое

==71

состояние живой системы оказывается всякий раз непростым компромиссом. Заметим, что отыскание таких компромиссов происходит без участия интеллекта — принципы отбора формируют те механизмы, которые находят эти стихийные «алгоритмы эволюции».

Совсем иначе складывается ситуация на социальном уровне организации материи. Здесь ранжирование функционалов [Oi], определяющих условия гомеостазиса и формирования их свертки, становится прерогативой интеллекта. Поскольку те или иные предпочтения, которые определяют поведение людей, являют собой субъективное представление о способах обеспечения социальной стабильности, будь это отдельный человек, род, племя и т. д., субъективный фактор начинает играть все большую роль.

Возникающая неопределенность, которую порождает субъективный фактор, начинает во многих случаях заменять природную стохастичность, необходимую для развития эволюционного процесса. Изменчивость теперь в значительной степени определяется различием в целях, различием в оценках обстановки и путях достижения целей, даже если они и совпадают. Мы видим, что деятельность интеллекта качественно меняет все алгоритмы отбора.

На уровне живой природы наиболее типичными и легко наблюдаемыми являются механизмы адаптационного типа, а бифуркации возникают лишь в исключительные моменты ее истории. На социальном уровне ситуация также радикальным образом изменяется. Более того, говоря об общественных формах движения, мы должны внести существенные коррективы в ту условную классификацию механизмов развития, которую ввели ранее.

В самом деле, развитие любой социальной системы из любого состояния может происходить заведомо не единственным образом даже и тогда, когда она не подвержена действию неизвестных нам сил, случайностям и неопределенностям. Причина тому — интеллект, который включается в процесс выбора «продолжения».

Дальнейшее развитие любого процесса общественной природы определяется той ранжировкой функционалов, если пользоваться языком, который мы употребляем в этом параграфе, то есть той субъективной шкалой предпочтений, которая существует у каждого человека. А точно предусмотреть действия людей нельзя в принципе: в одних и тех же условиях два разных человека

==72

часто принимают совершенно разные решения. Отсюда возникает неоднозначность и неопределенность возможных продолжений процесса развития в каждый момент времени.

Другими словами, каждое состояние социальной системы, по нашему определению, является бифуркационным. Именно это обстоятельство приводит к резкому ускорению всех процессов самоорганизации общества. По мере развития научно-технического процесса и производительных сил организационные основы общества начинают изменяться во все возрастающем темпе.

Заметим, что язык оптимизации, то есть отыскания экстремальных значений некоторых функционалов, с помощью которого мы описали алгоритмы развития на нижних уровнях организации материи, сохраняет свое значение и для социальной реальности. Однако интеллект производит фильтрацию возможных решений, возможных типов компромиссов неизмеримо эффективнее и быстрее, нежели это делает механизм естественного отбора.

Активное участие интеллекта в процессе развития позволяет расширить область поиска оптимума. Общественные силы перестают быть рефлексными, такими, в которых локальный минимум разыскивается по четко регламентированным правилам. Поэтому для описания алгоритмов развития, действующих в системах социальной природы, простого языка оптимизации становится уже недостаточно. Мы вынуждены использовать другие способы описания, принятые в теории исследования операций и системном анализе. В частности, это язык и методы анализа конфликтных ситуаций и многокритериальной оптимизации.

Особое значение приобретает «обобщенный принцип минимума диссипации», область применения которого непрерывно расширяется. На протяжении всей истории человечества стремление овладеть источниками энергии и вещества было одним из важнейших стимулов развития и устремления человеческих интересов. И поэтому оно всегда было источником разнообразных конфликтов.

По мере развертывания научно-технического прогресса, по мере истощения земных ресурсов все более утверждается новая тенденция — стремление к экономному расходованию этих ресурсов. Возникают, в частности, безотходные технологии. Преимущественное раз-

==73

витие получают производства, требующие небольших энергозатрат и материалов, это прежде всего электроника и биотехнология. На протяжении всей истории темпы развития энергетики опережали темпы развития других отраслей производства. Теперь, кажется, эти темпы начинают выравниваться.

Способность использовать свободную энергию и другие ресурсы планеты практически всегда определяла исход конфликтов между социальными структурами, а также отбор таких структур. По-видимому, так будет и в дальнейшем, хотя теперь появится много других факторов отбора организационных общественных структур, о чем я буду специально говорить во второй части этой книги.

Поэтому изучение конфликтных ситуаций и принципов отыскания компромиссов приобретает на современном этапе особую важность. Именно в этой сфере знаний может проявиться потенциальная способность человека самостоятельно и целенаправленно формировать алгоритмы развития.

ЗАМЕЧАНИЯ О ПРИНЦИПАХ МИНИМУМА ДИССИПАЦИИ

Обсуждая принципы отбора и механизмы развития, особое внимание я уделил принципу минимума диссипации энергии. Этот вопрос не нов. Проблема «экономии энтропии» — этой меры разрушения организации и меры необратимого рассеяния энергии — уже неоднократно была предметом самого тщательного анализа. Однако я придал этой проблеме не совсем привычную трактовку. Поэтому, формулируя те или иные положения, касающиеся принципа минимума диссипации, я должен показать их связь с теми утверждениями, которые выдвигались другими авторами.

Мое утверждение, которое относилось к миру неживой материи, было следующим: если множество устойчивых (квазиусгойчивых, стабильных) движений или состояний, удовлетворяющих законам сохранения и другим ограничениям физического характера, состоит более чем из одного элемента, то есть они не выделяют единственного движения или состояния, то заключительный этап отбора, отбор реализуемых движений или состояний, которые также могут и не быть единственными,

==74

определяется минимумом диссипации энергии или минимумом роста энтропии.

Это утверждение не является строгой теоремой, подобной вариационным принципам механики. Это всего лишь предположение, но достаточно правдоподобное и, во всяком случае, не противоречащее экспериментальному материалу. И поэтому оно позволяет получить весьма полезные результаты, полезные с точки зрения практики. Приведем один пример, иллюстрирующий его применение.

Рассмотрим установившееся движение по круглой трубе смеси двух жидкостей разной вязкости, но одинаковой плотности. Коэффициент вязкости этой смеси будет зависеть от процентного соотношения ее составляющих. Рассматриваемое течение - моделирует движение суспензии, представляющей собой жидкость со взвешенными в ней частицами, когда их размер очень мал по сравнению с диаметром 1рубы.

Течение такой суспензии обладает замечательным свойством: в узкой зоне около стенок трубы взвешенные частицы отсутствуют. Это явление носит название пристеночного эффекта. Его подробное аналитическое исследование было проведено Ю. Н. Павловским (см.: Павловский Ю. П. О пристеночном эффекте. — Механика жидкостей и газов. М., 1967, № 2, с. 160).

Законам сохранения может удовлетворить движение смеси с произвольным распределением концентрации более вязкой жидкости. Однако в природе устанавливается такое течение, которое обладает пристеночным эффектом, когда концентрация жидкости большей вязкости практически равна нулю у стенок трубы и максимальна в окрестности ее оси. Оказывается, что такое течение удовлетворяет принципу минимума диссипации.

Нетрудно привести еще серию примеров из самых разных областей науки и техники, показывающих, как, используя принцип минимума диссипации, можно объяснить и предсказать целый ряд наблюдаемых явлений.

Итак, опытные данные показывают, что существует определенный класс явлений в неживой природе, для которых принцип минимума диссипации энергии оказывается одним из важнейших принципов, позволяющих выделить реальные состояния из множества виртуальных. На этом основании в предлагаемой книге и был сформулирован этот принцип как некоторое эмпирическое обобщение, если угодно, как некоторая гипотеза.

==75

Именно в такой форме он и был внесен в иерархию принципов отбора. В ней он играл роль «замыкающего» принципа: когда другие принципы не выделяют единственного устойчивого состояния, а определяют целое возможное множество, то принцип минимума диссипации служит дополнительным принципом отбора. Заметим, что среди неустойчивых (или лучше сказать, быстро протекающих) движений могут быть и такие, которым отвечает меньшее производство энтропии. Однако из-за их неустойчивости мы их и не способны наблюдать.

Чтобы избежать лишних дискуссий, я хочу еще раз подчеркнуть, что мое утверждение не является строгой теоремой и вряд ли оно вообще может быть обосновано с традиционных позиций, согласно которым обоснование того или иного вариационного принципа сводится к доказательству тождественности траекторий движения экстремалям минимизируемого функционала. Мне кажется, что обсуждаемый факт связан с общим стохастическим фоном любого явления, протекающего в нашем мире.

Заметим, что, никогда специально не формулируя, мы всегда пользуемся еще одним подобным принципом — «принципом устойчивости». Этот принцип я бы сформулировал так: множество наблюдаемых стационарных состояний включает в себя лишь устойчивые. Он тривиален, если учесть, что любая система все время подвержена действию случайных возмущений. В самом деле, мы никогда не наблюдаем карандаша, стоящего на своем острие, или маятника в его верхнем неустойчивом состоянии.

Вариационные принципы, возникшие в механике и физике, сыграли выдающуюся роль в их развитии и создании эффективных методов анализа различных прикладных задач. В последние десятилетия вариационные принципы широко использовались и при создании сложных физических теорий. На этом пути очень важные результаты были получены еще в 1931 году создателем не равновесной термодинамики голландским физиком Л. Онзагером. Им был найден некоторый функционал, который получил название потенциала рассеивания, достигавший своего минимального значения на решениях уравнений, описывающих движение сплошной среды, в которой происходят химические реакции. В 1947 году бельгийским физиком И. Пригожиным другим путем был также получен принцип, который был им назван

==76

принципом минимума производства энтропии. В 70-х годах венгерский физик И. Дьярмати показал, что оба эти принципа при известных условиях являются эквивалентными (см.: Дьярмати И. Неравновесная термодинамика. М., 1974) и принцип Пригожина следует из'принципа Онсагера.

Работа Онсагера, Пригожина и их последователей имела своей целью построение «классических» вариационных принципов, таких, из которых законы сохранения, то есть уравнения, описывающие движение среды, были бы прямыми следствиями. Другими словами, ими была сделана попытка построить принципы, носящие достаточно универсальный характер. Во всяком случае, такой же, как и принципы механики. Однако для их вывода требовалось сделать ряд серьезных предположений об особенности изучаемых движений и процессов: локальная обратимость, линейность в смысле Онсагера и т. д. Благодаря этому развитие и использование принципов Онсагера и Пригожина для анализа прикладных задач столкнулись с целым рядом трудностей, и их область применимости оказалась на деле весьма ограниченной.

Вместе с тем И. Пригожий дает следующую формулировку принципа минимума производства энтропии: «Теорема о минимуме производства энтропии... утверждает, что производство энтропии системой, находящейся в стационарном, достаточно близком к равновесному состоянию, минимально» (см.: Пригожий И. Р. Время, структуры и флюктуации. — Успехи физических наук. М., 1980, т. 131, вып. 2, с. 185). Он рассматривает сформулированный принцип в качестве весьма универсального.

Примеров, показывающих неуниверсальность этого принципа, который в литературе получил название теоремы Пригожина — Глейнсдорфа, сейчас известно уже достаточно много. Поэтому я отношу принцип Онсагера — Пригожина — Глейнсдорфа, как и остальные классические вариационные принципы, к числу важных утверждений физики и физикохимии, каждый из которых имеет свою вполне определенную область применимости. Что же касается принципа «минимума энтропии», который я ввел и использую в этой работе, то он не имеет прямого отношения к указанным выше принципам, не следует из них и представляет, с моей точки зрения, некоторое эвристическое утверждение, отвечающее тому, что мы наблюдаем в окружающем мире.

==77

Проблема формулировки принципов отбора, когда мы переходим к описанию процессов развития живого вещества, еще резко усложняется. Появляется стремление к сохранению гомеостазиса, которому отвечает представление об обратных связях. Они, в свою очередь, являются новыми принципами отбора, свойственными только живой природе.

Но эти принципы отбора действуют совершенно иначе, нежели принципы отбора в неживой природе. Так, например, законы сохранения массы или импульса не могут не выполняться. Ничему и никому ни при каких ибстоятельствах не дано возможности нарушить эти законы. Что же касается принципа стабильности живого организма — принципа сохранения гомеостазиса, то он проявляется не как закон физики, а как тенденция: живое существо стремится сохранить свою стабильность, но в принципе оно способно ее и нарушить. При этом оно может погибнуть или выжить, но это уже другой вопрос. Тенденция сохранения гомеостазиса у живого вещества — это эмпирическое обобщение, ибо оно наблюдается в природе и не знает примеров, ему противоречащих.

Точно так же и принцип минимума диссипации энергии проявляется в живом веществе как некоторая тенденция: эмпирический принцип переходит в эмпирическую тенденцию — любому живому существу свойственно стремление в максимальной степени использовать внешнюю энергию и вещество.

Я думаю, что это очень важный принцип, неэквивалентный принципу сохранения гомеостазиса. Более того, в известных условиях первый может даже противоречить второму. Эту проблему я уже обсуждал. Здесь заметим только, что с позиций представления о самоорганизации разрешение возникающего противоречия вполне возможно; чтобы найти новые и более устойчивые состояния, живая система должна покинуть старое состояние, а это можно сделать только за счет внешних энергии и вещества при положительных обратных связях, разрушающих старые стабильные состояния.

В живой природе описанное противоречие между тенденцией к локальной стабильности и стремлением в максимальной степени использовать внешнюю энергию и материю является одним из важнейших факторов создания новых форм организации материального мира.

==78

00.htm - glava04

ГЛАВА III Память, ее генезис в преддверии интеллекта

ВОЗНИКНОВЕНИЕ ГЕНЕТИЧЕСКОЙ ПАМЯТИ И ОБРАТНЫХ СВЯЗЕЙ

В предыдущих главах я изложил исходные принципы той методологии, которую принимают в качества основы для глобального анализа: сама Земля и все, что на ней происходило, происходит сегодня и будет происходить завтра — суть частные проявления единого, общего процесса саморазвития материи, подчиняющегося единой системе законов (правил), действующих в нашей Вселенной.

Пользуясь терминологией, получившей ныне широкое распространение, мы можем сказать, что все наблюдаемое нами, все, в чем мы сегодня участвуем, — это лишь фрагменты единого синергетического мирового процесса. Его течение обусловлено законами, характерные времена которых лежат за пределами доступных нам сегодня знаний и измерений. Это позволяет считать их постоянными.

==79

Все развитие нашего мира выглядит сложной борьбой различных противоположных начал и противоречивых тенденций на фоне непрерывного действия случайных причин, разрушающих одни устойчивые (точнее, квазистабильные) структуры и создающих предпосылки для появления новых.

Несмотря на огромные достижения науки последних десятилетий, от нее сегодня, как и во времена В. И. Вернадского, остаются пока скрытыми основные детали важнейшей «земной тайны» — появления жизни на нашей планете, возникновения буфера — пленки, по терминологии В. И. Вернадского, между космосом и неживым веществом Земли. Мы знаем только, что около 3,5—4 миллиардов лет тому назад на Земле появилась качественно иная форма организации материи, которая обладает удивительной способностью усваивать внешнюю энергию, прежде всего энергию Солнца, с помощью реакции фотосинтеза.



Скачать документ

Похожие документы:

  1. С. Г. Хорошавина концепции современного естествознания курс лекций (1)

    Курс лекций
    Предлагаемый курс способствует расширению представлений о едином процессе развития, охватывающем живую природу, неживое вещество и общество. Программа курса позволяет вооружить слушателей знаниями, отвечающими современному уровню
  2. С. Г. Хорошавина концепции современного естествознания курс лекций (2)

    Курс лекций
    Предлагаемый курс способствует расширению представлений о едином процессе развития, охватывающем живую природу, неживое вещество и общество. Программа курса позволяет вооружить слушателей знаниями, отвечающими современному уровню
  3. От волюнтаризма к экзистенциализму (компаративистский анализ) оглавление введение. Раздел первый

    Документ
    В историко-философской литературе последних десятилетий выражение «философия жизни» употребляется в нескольких значениях, которые различаются главным образом не смыслом, а объемом.
  4. О. Керівник ндр канд геогр наук, доцент кафедри фізичної географії та геології Казаков В. Л. 1999 Кривий Ріг Рукопис закінчено 10 грудня 1999 р

    Документ
    КАЗАКОВ Володимир Леонідович, кандидат географічних наук, доцент кафедри фізичної географії та геології, голова Криворізького відділу Українського географічного товариства, керівник НДР.
  5. И. В. Понкина посвящено выявлению существующих фактов дискриминации и унижения человеческого достоинства граждан, выражающих принадлежность или предпочтительное отношение к Русской Православной Церкви, по признаку

    Документ
    Бесчестная дискуссия о религиозном образовании в светской школе: ложь, подмены, агрессивная ксенофобия. Правовой анализ / И.В. Понкин, М.Н. Кузнецов. – М.

Другие похожие документы..