Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Лише філософія, позаяк вона поширюється на все доступне людському пізнанню, відрізняє нас від дикунів та варварів, і кожен народ є тим більше цивілі...полностью>>
'Курсовая'
Перед всеми фирмами, организациями встает задача назначения цены на свои товары или услуги. Цена выступает в разных ипостасях. Нас со всех сторон окр...полностью>>
'Документ'
Участниками конференции явились представители органов государственной власти и местного самоуправления Республики Бурятия, науки, образования, общест...полностью>>
'Документ'
Визначення понять і термінів: політика, політична сфера, політичне поле, політична теорія, політична думка, функції політології, методи політології, ...полностью>>

Лабораторная работа ¹6

Главная > Лабораторная работа
Сохрани ссылку в одной из сетей:

ЛАБОРАТОРНАЯ РАБОТА ¹6.

РЕШЕНИЕ ЛИНЕЙНЫХ СИСТЕМ УРАВНЕНИЙ МЕТОДАМИ ГАУССА, ПРОГОНКИ И ТЕРАЦИЙ.

I. ЦЕЛЬ РАБОТЫ.

1.Изучение основных определений и положений теории систем линейных алгебраических уравнений.

2.Изучение основных численных методов решения систем линейных уравнений.

3.Разработка численного алгоритма и решения на ЭВМ систем линейных уравнений методами прогонки и итераций.

II. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ.

1. Основные определения. Система уравнений вида:

(2.1)

или в сокращенной записи:

называется линейной алгебраической системой из n уравнений с n-неизвестными xi (i=1,...,n). В матричной форме она записывается следующим образом:

где A - квадратная матрица, и - векторы столбцы вида:

Определителем ( детерминантом ) матрицы А порядка n называется число Dn (detA) равное:

где индексы a,b,...,a,b пробегают все возможные n! перестановок чисел 1,2,...n; k- число инверсий в данной перестановке ( инверсия - количество всех возможных пар из индексов a,b,...,w, для которых выполняется условие, что в паре первый индекс больше второго, например, если a>b и a,b<...w, то в перестановке всего одна инверсия).

Также используется следующее определение детерминанта, которое эквивалентно предыдущему:

где - определитель матрицы порядка (n-1), образованной из матрицы A вычеркиванием первой строки и i-ого столбца.

Для существования единственности решения системы (2.1) необходимо и достаточно выполнения условия det A¹0.

Методы решения системы (2.1) делятся на две группы - прямые (точные) и итерационные (приближенные).

  1. Прямые методы. Наиболее распространенными являются следующие прямые методы:

а) правила Крамера. Решение системы (2.1) имеет вид:

где

(2.2)

б) метод Гаусса. Этот метод основан на приведении методом исключения системы (2.1) к треугольному виду (прямой ход ):

(2.3)

а затем решение этой системы начиная с xn и т.д. (обратный ход).

Если система сразу сводится к диагональному виду, то такой метод называется методом Жордана-Гаусса.

Для уменьшения погрешности округления при сведении матрицы А к треугольному виду выбирается максимальный элемент в столбце или в строке и с помощью перестановок он делает главным (схема частичного выбора). Если главный элемент выбирается во всей матрице, то схема носит название глобального выбора.

Алгоритм решения системы из n уравнений методом Гаусса с выбором главного элемента по столбцам выглядит следующим образом.

Прямой ход. На k шаге выбирается главный элемент в k столбце. Пусть это будет элемент в j -ой строке , k£j£n. Верхний индекс в скобках указывает, что коэффициенты уравнения получены после (k-1) шага исключения.

Перестановкой j и и k строк делает этот элемент диагональным.

Далее производим исключение xk из уравнений с номерами k+1,...,n с помощью соотношения:

(2.4)

После n-1 шагов приходим к системе уравнений (2.3) с треугольной матрицей.

Обратный ход.

Из последнего уравнения находим . Далее определяем , а затем и т.д. до x1 c помощью соотношения:

(2.5)

в) метод прогонки. Данный метод применяется для решения трех диагональных систем:

(2.6)

Метод состоит из двух этапов прямой прогонки - и обратной прогонки.

Прямая прогонка: Величина xi выразим через xi+1 с помощью коэффициентов Ai, Bi

. (2.7)

Из первого уравнения находим значения A1 и B1:

, . (2.8)

Подставляя x1=A1·x2+B1 во второе уравнение (2.6) имеем:

a2(A1x2+B1)+b2x2+c2x3=d2,

или

Отсюда согласно (2.7) находим A2 и B2

, (2.9)

т.е. зная A1 и B1 по этой формуле мы можем вычислить A2 и B2. Аналогично подставляя значение xi-1=Ai-1xi+Bi-1 в i уравнение (заменяя в (2.8) индекс 1 на индекс i-1, а индекс 2 - на индекс i) имеем:

ai(Ai-1xi+Bi-1)+bixi+cixi+1=di, i=1,2,...n.

Отсюда можем записать общую формулу для прямой прогонки:

, i=2,...,n; (2.10)

которая позволяет определить последующие значения Ai, Bi через предыдущие Ai-1, Bi-1.

После n шагов получим значения An и Bn. Так как cn=0, то An=0. Следовательно на основание (2.7) имеем: xn=Bn.

Обратная прогонка состоит в последовательных вычислениях по формуле (2.7) значений xn-1, xn-2 и т.д. до x1.

Если для трех диагональной системы выполнены условия çbiç³çaiç+çciç, ½bi½>½ai½, i=1,...,n, то эта система имеет единственное решение.

3. Итерационные методы. Эти методы используются обычно при решении уравнений большого порядка, поскольку при итерационном процессе не накапливается ошибка округления.

Задается некоторое приближенное решение x(0), затем производится цикл вычислений ( итераций ) и вычисляется новое приближение x(1). Процесс продолжается до получения решения с заданной точностью, т.е. до выполнения условий:

, i=1,2,...,n.

а) метод простой интерполяции (Метод Якоби). Система уравнений (2.1) сводится к виду:

(2.11)

Задаются значения нулевого приближения и вычисляется значение первого приближения , затем с помощью вычисляется значение и т.д. до . Затем процесс повторяется для значений Здесь при вычислении k приближения для используется k-е приближение для значений и k-1 приближение для значений .

б) метод Гаусса-Зейделя. В этом методе система (2.1) также сводится к виду (2.11), при этом для вычисления всех значений k приближения для используются только значения (k-1) приближения .

Для сходимости интерполяционного процесса Якоби и Гаусса-Зейделя достаточно выполнения условия :

(2.12)

Метод Якоби применяются к системам с матрицами близким к диагональным, а метод Гаусса-Зейделя - близким к нижним треугольникам.

III. ЗАДАНИЕ.

  1. Решить систему линейных алгебраических уравнений, коэффициенты которой приведены в таблице заданий методами Гаусса, прогонки, итерационным методом. Предварительно систему привести к трех диагональному виду.

2. Показать, что используемый метод имеет единственное решение в случае использования прямого метода или сходится в случае итерационного метода.

3. Написать программу и решить на ЭВМ с помощью этих методов систему уравнений и сравнить результаты.

IV. ПРИМЕР ВЫПОЛНЕНИЯ РАБОТЫ.

Задание. Решить систему линейных уравнений методами Гаусса, Гаусса-Зейделя, методом прогонки и сравнить результаты.:

(4.1)

1. Так как система (4.1) удовлетворяет условию:

то ее можно решать методами Якоби и Гаусса-Зейделя. Записываем итерационную формулу метода Гаусса-Зейделя:

(4.2)

2. Задаем точность e=10-6 и начальное приближение:

(4.3)

3. Система (4.1) имеет трех диагональную матрицу четвертого порядка и ее можно решать методом прогонки.

Из системы (4.1) следует, что . Следовательно, система имеет единственное решение и для решения можно применить метод прогонки.

4. Согласно (2.8,2.10) имеем: (прямая прогонка):

(4.4)

(4.5)

С помощью (2.7) вычисляем значения:

(4.6)

5. Примеры текстов программ для решения системы (4.1) методом Гаусса-Зейделя и методом прогонки:

program lab6(1);

{Решение системы линейных уравнений методом Гаусса-Зейделя}

{a[j,i] - элементы матрицы A для системы линейных уравнений}

{b[i] - элементы вектора-столбца правой части системы уравнений}

{e - точность решения}

{xk[i] - элементы вектора-столбца “к”-го приближенного решения}

{yk[i] - элементы вектора-столбца “к+1”-го приближенного решения}

var a : array[0..10,0..10] of real;

var xk,yk : array[1..10] of real;

var e: real;

var i,j: integer;

label m;

begin

for j:=1 to 4 do begin

writeln(‘Введите значения строки j=’j,’ матрицы A’);

readln (a[j,1],a[j,2],a[j,3],a[j,4]);

end;

writeln(‘Введите 4 значения столбца правой части b’);

readln (b[1],b[2],b[3],b[4]);

writeln(‘Введите задаваемую точность e’);

readln (e);

writeln(‘Введите 4 значения столбца нулевого приближения x’);

readln (xk[1],xk[2],xk[3],xk[4]);

m: for j:=1 to 4 do begin

yk[j]:=b[j]/a[j,j];

for i:=1 to 4 do begin

if i<>j then yk[j]:=yk[j]-a[j,i]*xk[i]/a[j,j]; вычисления по (4.2)

end;

end;

i:=1;

for j:=1 to 4 do begin

if abs(yk[j]-xk[j]) <e then i:=i*1 else i:=i*0;

xk[j]:=yk[j];

end;

if i=0 then goto m;

writeln(‘Решение линейной системы методом Гаусса-Зейделя’);

writeln(‘x1=’,x[1],’ x2=’,x[2],’ x3=’,x[3],’ x4=’,x[4]);

end.

program lab6(2);

{Решение системы линейных уравнений методом прогонки}

{a[j,i] - элементы матрицы A для системы линейных уравнений}

{b[i] - элементы вектора-столбца правой части системы уравнений}

{x[i] - элементы вектора-столбца искомого решения}

var a : array[0..10,0..10] of real;

var x,b,ai,bi,ci,di,Aii,Bii : array[0..10] of real;

var e: real;

var i,j: integer;

begin

for j:=1 to 4 do begin

writeln(‘Введите 4 значения строки j=’j,’ матрицы A’);

readln (a[j,1],a[j,2],a[j,3],a[j,4]);

end;

writeln(‘Введите 4 значения столбца правой части b’);

readln (b[1],b[2],b[3],b[4]);

for i:=1 to 4 do begin

if i:=1 then ai[i]:=0 else ai[i]:=a[i,i-1]; вычисление ai

bi[i]:=a[i,i]; вычисление bi

if i:=4 then ci[i]:=0 else ci[i]:=a[i,i+1]; вычисление ci

di[i]:=b[i]; вычисление di

end;

Aii[1]:=-ci[1]/bi[1]; вычисление A1

Bii[1]:=di[1]/bi[1]; вычисление B1

for i:=2 to 4 do begin

e:=c[i]*Aii[i-1]+bi[i];

Aii[i]:=-ci[i]/e;

Bii[i]:=(di[i]-ai[i]*Bii[i-1])/e;

end;

for i:=4 downto 1 do begin

x[i]:=Aii[i]*x{i+1]+Bii[i]; вычисление xi по (4.6)

writeln(‘Решение линейной системы методом прогонки’);

writeln(‘x1=’,x[1],’ x2=’,x[2],’ x3=’,x[3],’ x4=’,x[4]);

end.

  1. Заполняем таблицу:

Метод

x1

x2

x3

x4

Гаусса

Гаусса-Зейделя

Прогонки

V. СОДЕРЖАНИЕ ОТЧЕТА.

1. Название лабораторной работы.

2. Индивидуальное задание.

3. Теоретическая часть.

4. Текст программы.

5. Результаты расчета.

Замечание: Пункт 1-4 должны быть оформлены до начала выполнения лабораторной работы.

VI. КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. Матричная форма записи системы линейных уравнений.

2. Что такое определитель?

3. Необходимое и достаточное условие существования единственного решения системы линейных уравнений.

4. Определение обратной матрицы. Условие ее существования.

5. Что такое единичная матрица?

6. Основные методы решения системы линейных уравнений.

7. Правило Крамера.

8. Методы Гаусса, Жордана-Гаусса.

9. Метод прогонки.

10. Условие единственности решения методом прогонки

11. Итерационные методы Якоби, Гаусса-Зейделя.

  1. Достаточное условие сходимости итерационных методов Якоби и Гаусса-Зейделя.

  2. VII. ТАБЛИЦА ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ.

Матрица системы

Правая часть

1

2

3

1

0.401

-0.029

0.000

0.000

0.301

-0.500

-0.050

0.000

0.000

-0.018

-1.400

-0.007

0.000

0.000

-0.039

-2.300

0.122

-0.253

-0.988

-2.082

2

-1.700

0.002

0.000

0.000

0.003

0.800

-0.002

0.000

0.000

0.001

-0.100

-0.003

0.000

0.000

0.030

-1.600

0.681

0.480

-0.802

-1.007

3

-3.000

-0.011

0.000

0.000

0.001

2.100

0.005

0.000

0.000

0.5200

1.200

-0.010

0.000

0.000

0.600

-0.300

1.514

1.478

1.083

-1.007

4

4.300

0.100

0.000

0.000

0.217

-3.400

0.090

0.000

0.000

-0.207

2.500

0.080

0.000

0.000

0.197

-1.600

2.663

2.778

2.533

1.928

5

-5.600

0.147

0.000

0.000

0.268

4.700

-0.150

0.000

0.000

0.271

-3.800

0.153

0.000

0.000

0.274

2.900

4.032

4.313

4.235

3.797

6

6.900

0.191

0.000

0.000

0.319

-6.000

-0.205

0.000

0.000

-4.040

5.100

0.020

0.000

0.000

0.000

4.200

5.664

6.112

6.201

5.937

7

-8.200

0.234

0.000

0.000

0.370

7.300

0.260

0.000

0.000

5.600

-0.340

0.268

0.000

0.000

-0.422

5.500

7.559

8.175

8.421

8.322

8

9.500

0.278

0.000

0.000

0.422

8.601

0.315

0.000

0.000

0.459

7.700

0.351

0.000

0.000

0.496

6.803

9.719

10.500

10.915

10.978

9

10.800

0.321

0.000

0.000

-0.5760

9.900

0.369

0.000

0.000

7.300

9.000

0.416

0.000

0.000

-6.060

8.100

12.143

13.089

13.674

13.897

10

-1.100

0.365

0.000

0.000

0.528

0.113

-0.423

0.000

0.000

0.536

1.031

0.481

0.000

0.000

0.534

-0.570

14.830

15.941

16.969

17.081

11

13.400

-0.408

0.000

0.000

0.581

12.500

0.477

0.000

0.000

-0.650

-11.600

0.546

0.000

0.000

0.781

10.700

17.782

19.593

19.974

20.528

12

30.300

0.975

0.000

0.000

0.153

-29.400

0.117

0.000

0.000

0.011

-2.500

10.700

0.000

0.000

1.660

27.600

80.168

83.578

86.609

89.278

13

0.161

0.109

0.000

0.000

0.332

-0.301

-0.060

0.000

0.000

-0.150

0.171

0.145

0.000

0.000

0.051

-0.298

86.814

90.358

19.861

93.502

14

-22.500

0.714

0.000

0.000

-0.956

21.600

0.855

0.000

0.000

0.109

20.714

-0.996

0.000

0.000

0.124

19.800

45.802

48.261

50.343

52.453

15

26.400

0.840

0.000

0.000

0.117

-25.513

0.105

0.000

0.000

0.198

24.600

0.000

0.000

0.000

-8.810

2.451

61.853

64.730

63.880

59.376



Скачать документ

Похожие документы:

  1. Лабораторная работа №1 (1)

    Лабораторная работа
    VBA относится к языкам объектно- ориентированного программирования (ООП). ООП можно описать как методику анализа, проектирования и написания приложений с помощью объектов.
  2. Лабораторная работа №1 (3)

    Лабораторная работа
    Цели: освоение принципов построения электронной таблицы. Ввод чисел, текста, формул, копирование формул, редактирование и пересчет ячеек, сохранение таблицы на диске, открытие существующей таблицы, закрытие таблицы без записи на диск.
  3. Лабораторные работы (2)

    Документ
    Одним из основных методов обучения физике в школе является проведение лабораторных работ. Но в то же время этот вид урока – один из самых сложных и хлопотных для учителя.
  4. Лабораторная работа №1 (4)

    Лабораторная работа
    Замечание: В задачах 1 – 3 «длинные» натуральные числа представить в виде одномерных массивов. Будем считать, что такое число имеет не более 100 цифр.
  5. Лабораторная работа 1

    Лабораторная работа
    Построение графиков функций – это, хотя и трудоемкая (при ручном выполнении), но в то же время весьма полезная математическая операция. Часто графики используются как наиболее простое и наглядное средство, позволяющее быстро выявить
  6. Лабораторные работы (1)

    Практикум
    К третьей группе – работы, посвященные специальным методам исследования образцов, моделей, элементов конструкций или сооружений (оптический метод и др.

Другие похожие документы..