Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Урок'
Для активизации познавательной деятельности школьников на уроках информатики считаю целесообразным представлять учебный материал в мультимедийном и и...полностью>>
'Документ'
Современное высшее профессиональное образование в рамках реализации стратегической модели "Российское образование 2020": к проектированию м...полностью>>
'Документ'
1.1. Головною метою викладання курсу «Теорія економічного аналізу» є надання студентам системних знань щодо наукових основ економічного аналізу, його...полностью>>
'Документ'
Kitabın nəşrində göstərdiyi köməyə görə Azərbaycanda Vətəndaş Cəmiyyətinin İnkişafına Yardım Assosiasiyasının prezidenti Elxan Süleymanova, Azərbayca...полностью>>

Аруцев Александр Артемьевич, Ермолаев Борис Валерьевич, Кутателадзе Ираклий Отарович, Слуцкий Михаил Семенович учебное пособие

Главная > Учебное пособие
Сохрани ссылку в одной из сетей:

Особенность простых систем - в практически взаимной независимости их свойств, позволяющей исследовать каждое из них в отдельности в условиях классического лабораторного эксперимента; особенность сложных систем заключается в существенной взаимосвязи их свойств (иногда она даже применяется как определение сложной системы).

Будем считать систему сложной, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов, каждый из которых может быть представлен в виде системы. В качестве содержания теории развития сложных систем можно рассматривать совокупность методологических подходов, позволяющих строить модели процессов развития сложных систем, используя достижения различных наук, а также методы анализа получаемых моделей.

Обычное для теории простых систем требование адекватности модели оригиналу для моделей сложных систем приводит к непомерному росту их размерности, приводящему к их неосуществимости. Ситуация для построения теории кажется безнадежной, она действительно оказывается таковой, если не произвести некоторого разумного отступления от непомерных требований адекватности теории и вместе с тем не отступать от требований ее объективности.

Математические модели любых систем могут быть двух типов - эмпирические и теоретические. Эмпирические модели - это математические выражения, аппроксимирующие (с использованием тех или иных критериев приближения) экспериментальные данные о зависимости параметров состояния системы от значений параметров влияющих на них факторов. Для эмпирических математических моделей не требуется получения никаких представлений о строении и внутреннем механизме связей в системе. Вместе с тем задача о нахождении математического выражения эмпирической модели по заданному массиву наблюдений в пределах выбранной точности описания явления не однозначна. Существует бесконечное множество математических выражений, аппроксимирующих в пределах данной точности одни и те же опытные данные о зависимости параметров.

Теоретические модели систем строятся на основании синтеза обобщенных представлений об отдельных слагающих их процессах и явлениях, основываясь на фундаментальных законах, описывающих поведение вещества, энергии, информации. Теоретическая модель описывает абстрактную систему, и для первоначального вывода ее соотношений не требуется данных о наблюдениях за параметрами конкретной системы. Модель строится на основе обобщения априорных представлений о структуре системы и механизма связей между слагающими ее элементами.

Наряду с эмпирическими и теоретическими используются и полуэмпирические модели. Для них математические выражения получаются теоретическим путем с точностью до эмпирически получаемых констант, либо в общей системе соотношений моделей наряду с теоретическими выражениями используются и эмпирические.

Построение эмпирических моделей - единственно возможный способ моделирования тех элементов системы, для которых нельзя построить в настоящее время теоретических моделей из-за отсутствия сведений об их внутреннем механизме. Вопросы, связанные с построением эмпирических моделей, относятся к области обработки наблюдений или, точнее, к математической теории планирования эксперимента.

Для некоторых систем единственная возможность оценить правильность теоретической модели состоит в проведении численных экспериментов с использованием математических моделей. Поведение модели не должно противоречить общим представлениям о закономерностях поведения процессов.

Теоретическая модель описывает не конкретную систему, а класс систем. Поэтому проверка теоретической модели возможна при исследовании конкретных частично или полностью наблюдаемых систем. Затем проверенную таким образом теоретическую модель можно применять для описания и изучения конкретных ненаблюдаемых систем, относящихся к тому же либо к более узкому классу.

Строго обосновать выражение "модели относятся к одному и тому же классу" несколько затруднительно. Мы будем рассматривать класс развивающихся систем, к которому могут относиться системы искусственные, живой и неживой природы, социальные и т.п.

Между эмпирическими, полуэмпирическими и теоретическими моделями не существует резкой границы. Любые математические модели, в конечном счете, выражаются через параметры, определяемые экспериментальным путем. Все различия между тремя упомянутыми типами моделей сводятся к степени общности представлений, относящихся к данной модели, а именно: или они относятся непосредственно к изучаемому конкретному объекту, или связаны с классом таких объектов, или же, наконец, связаны с классом явлений, наблюдающихся в природе

Большинство процессов столь сложно, что при современном состоянии науки очень редко удается создать их универсальную теорию, действующую во все времена и на всех участках рассматриваемого процесса. Вместо этого нужно посредством экспериментов и наблюдений постараться понять ведущие (определяющие) факторы, которые определяют поведение системы. Выделив эти факторы, следует абстрагироваться от других, менее существенных, построить более простую математическую модель, которая учитывает лишь выделенные факторы. К внешним факторам будем относить такие, которые влияют на параметры изучаемой модели, но сами на исследуемом временном отрезке не испытывают обратного влияния.

Известно, что материальное единство мира находит свое отражение во взаимосвязи целого и его частей. До недавнего времени в естествознании преобладающим был подход, согласно которому часть всегда рассматривалась как более простое, чем целое. Новое направление - синергетика описывает процессы, в которых целое обладает такими свойствами, которых нет у его частей. Она рассматривает окружающий материальный мир как множество локализованных процессов различной сложности и ставит задачу отыскать единую основу организации мира как для простейших, так и для сложных его структур. В то же время синергетика не утверждает, что целое сложнее части, она указывает на то, что целое и часть обладают различными свойствами и в силу этого отличны друг от друга.

В синергетике делается попытка описать развитие мира в соответствии с его внутренними законами развития, опираясь при этом на результаты всего комплекса естественных наук. Для нашего анализа представляется важным то, что одним из основных понятий синергетики является понятие нелинейности.
    Не только в процессе научного познания, но и в своей повседневной практике мы фактически сталкиваемся с различными проявлениями нелинейных закономерностей. Поведение нелинейных систем принципиально отличается от поведения линейных. Наиболее характерное отличие - нарушение в них принципов суперпозиции. В нелинейных системах результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия последнего.
    Математические исследования природы линейности и нелинейности так или иначе обусловливались потребностями развития физики. Постановка задачи о нелинейности связана с именами Рэлея, Д'Аламбера, Пуанкаре, которые исследовали математическую модель струны и другие модели при помощи дифференциальных уравнений.

В 30-е годы XX в. на первое место в области обыкновенных дифференциальных уравнений встают проблемы качественной теории. Значительное влияние на ее развитие оказывают потребности физики, особенно нелинейной теории колебаний. Физикам Андронову и Мандельштаму принадлежит здесь целый ряд важных математических идей и разработок. Мандельштам первым обратил внимание на необходимость выработки в физике нового "нелинейного мышления". До его работ существовали лишь отдельные частные подходы к анализу отдельных нелинейностей в различных физических задачах. Роль Мандельштама состоит в том, что он отчетливо понял всеобщность нелинейных явлений, сумел увидеть, что возможности линейной теории принципиально ограничены, что за ее пределами лежит огромный круг явлений, требующих разработки новых нелинейных методов анализа.
    Возникают вопросы: какова роль нелинейности, зачем необходимо разрабатывать нелинейные модели, если большое количество физических процессов можно объяснить с помощью линейных моделей или же свести нелинейные задачи к линейным? Ответ на эти вопросы состоит в следующем: линейные задачи рассматривают лишь рост, течения процессов, нелинейность же описывает фазу их стабилизации, возможность существования нескольких типов структур. В то же время нелинейность выражает тенденцию различных физических процессов к неустойчивости, тенденцию перехода к хаотическому движению. Таким образом, сочетание линейности и нелинейности (даже пока еще далеко не диалектическое) дает более адекватное отражение реальных процессов, так как с их помощью выражается единство устойчивости и изменчивости, являющееся ядром сущности всякого движения.
    Решение многочисленных проблем, возникающих при описании перехода от регулярного к стохастическому движению, связывается с развитием стохастической или хаотической динамики.

Удалось показать, что с помощью уравнений, предложенных Х.Лоренцем, либо систем уравнений, включающих странные аттракторы, возможно описание поведения некоторых типов плазменных волн, химических реакций в открытых системах, циклов солнечной активности. закономерностей изменения численности биологических сообществ, исследование вопросов, связанных с генерацией лазеров в некотором диапазоне параметров.
    Синергетика, используя единство линейности и нелинейности, выражает в теории те аспекты материального единства мира, которые связаны с общими свойствами саморазвития сложных систем. Нелинейные уравнения, составляющие основу этой теории, позволяют с помощью достаточно простых моделей описывать самые различные материальные процессы. Причем, даже не решая этих уравнений, можно выработать представление о качественно новых чертах тех процессов, которые этими уравнениями описываются.
    Теория описания сложных хаотических процессов М.Фейгенбаума представляет интерес, ибо автор, по существу, исходит из признания материального единства мира и пытается найти то общее, что присуще хаотическим процессам различной природы. Эта теория показывает, что поведение всех диссипативных систем вблизи перехода к хаотическому движению носит универсальный характер. Теория дает возможность описать поведение той или иной системы за пределами возможности других математических представлений.
    Для выявления наиболее общих закономерностей поведения нужны макромодели, которые имеют наиболее высокий уровень обобщения. Возможно, такой моделью может быть модель процесса развития, построенная на основе информационной концепции.
    Построение такой модели проводилось в несколько этапов: концептуальная модель; модель процесса самоорганизации; собственно математическая модель, т.е. уравнение, описывающее поведение системы; машинная модель, реализующая алгоритм решения этого уравнения.

4.3. КОНЦЕПТУАЛЬНАЯ МОДЕЛЬ РАЗВИТИЯ


    Наиболее важный этап процесса разработки модели состоит в выборе структуры модели системы. Вряд ли можно считать целесообразным начинать исследования сразу с подробной математической модели еще до того, как выдвинуты основные гипотезы и достигнуто более глубокое понимание механизма работы системы.

Разработка модели системы начинается с наименее структуризованных и наиболее широко применяемых понятий, и на их основе аксиоматическим образом развивается дальнейшая математическая модель.
    Методические аспекты изучения развития сложных систем неотрывны от самой теории развития. Задача заключается в том, чтобы для определенного класса систем, а именно открытых динамических самоорганизующихся, конкретизировать общие закономерности развития, формализовать их, построить модель развития.

Идея развития неразрывно связана с концепцией иерархии структурных уровней природы, выступающих как ступени, этапы развития природных объектов. Это положение едино для систем различной природы. Согласно схеме иерархического ступенчатого строения материи, отдельные объекты определенного уровня материи, вступая в специфические взаимодействия, служат исходными образованиями в развитии принципиально новых типов объектов с иными свойствами и формами взаимодействия. При этом основным исходным положением является наличие преемственности. Если нет преемственности, то мы будем наблюдать не процесс развития, а лишь хаотические смены круговоротов. Новое всегда рождается в недрах старого.

Развитие неживой и живой природы рассматривается как необратимое изменение структуры объектов природы. Важная проблема в теории развития - выявление объективных критериев прогресса, которые определяют переход системы от одного уровня развития к другому, более высокому.

Одной из естественнонаучных конкретизаций принципа развития является принцип возрастания энтропии, отражающий образование новых материальных форм и структурных уровней. Уравнение Больцмана для энтропии часто рассматривают как математическое выражение закона эволюции. Однако эта математическая модель процесса развития обладает следующими серьезными недостатками. Она показывает лишь направление эволюции и не учитывает того факта, что развивающиеся системы - это системы открытые, которые могут уменьшать свою энтропию за счет увеличения энтропии во внешней среде.

С позиций неравновесной термодинамики развитие трактуется как последовательность переходов иерархии структур возрастающей сложности. Переход на новый уровень развития идет от беспорядка к порядку через неустойчивость. В неравновесных ситуациях появление порядка возможно только при наличии внешних потоков (вещественно-энергетических или информационных), удерживающих систему далеко от равновесия. При отсутствии этих потоков (изоляции системы) в подобных ситуациях развиваются диссипативные разрушения структуры, рассеяния (диссипация) энергии или информации, в результате чего системы деградируют к равновесному состоянию. Взаимодействие со средой создает потенциальные возможности для возникновения неустойчивых состояний и появления вслед за неустойчивостью новой, более упорядоченной структуры.

Возникающая в процессе развития неустойчивость создает возможность скачкообразного перехода системы в новое состояние. Скачок можно рассматривать как реакцию системы на возмущение с целью его компенсации, только система возвращается не в старое состояние, а переходит в новое, т.е. "развитие через неустойчивость" обеспечивает устойчивость на более высоком уровне. При этом сама устойчивость понимается не как устойчивость равновесных структур типа кристаллических образований, а как динамическая устойчивость открытых систем за счет самоорганизации, авторегуляции, осуществляемая для достаточно сложных систем в основном путем информационного обмена (В.Эбелинг).

Спокойный эволюционный этап развития характеризуется наличием соответствующих механизмов, стабилизирующих данное состояние системы и ликвидирующих любое отклонение от него (возвращающих систему к этому состоянию). С течением времени эти механизмы ослабляются из-за количественного роста соответствующих параметров среды или системы, в силу чего они уже не могут осуществлять стабилизацию системы. Наступает кризисное состояние. Новое вступает в противоречие со старым, и, как разрешение этого противоречия, происходит скачкообразный переход системы в новое устойчивое состояние.

Развитие - это прежде всего необратимое изменение. Поэтому слишком устойчивая, т.е. абсолютно устойчивая, система к развитию не способна, ибо она подавляет любые отклонения от своего гиперустойчивого состояния и при любой флуктуации возвращается в свое равновесное состояние. Для перехода в новое состояние система должна стать в какой-то момент неустойчивой. Но перманентная неустойчивость - это другая крайность, которая также вредна для системы, как гиперустойчивость, ибо она исключает "память" системы, адаптивное закрепление полезных для выживания в данной среде характеристик системы.

Таким образом, хотя имеют право на существование только устойчивые системы (неустойчивые сразу элиминируются), но развиваются только те из существующих систем, которые способны (на время) становиться неустойчивыми под влиянием соответствующих факторов. Такой тип поведения характерен для открытых систем, которые могут находиться в стационарных состояниях, далеких от равновесия.

Такое поведение мы наблюдаем у биологических, экологических, экономических, социальных систем. В настоящее время основные положения неравновесной термодинамики о развитии сложных систем стали практически общенаучными.

Опираясь на такое представление о развитии сложных систем, можно выделить два основных параметра, характеризующих процесс развития. Это устойчивость системы и мера ее организованности.

Развитие - это единый целостный процесс, который может рассматриваться только по отношению к системе, так как этот процесс является результатом кооперативного действия элементов системы. Если мы хотим исследовать процесс развития отдельного элемента, то должны представить этот элемент в виде системы, проведя разбиение его на элементы и выделив внешнюю среду. Мерой организованности системы может служить энтропия, понимаемая в широком смысле. Состояние системы определяется распределением ее элементов, обладающих данным признаком, мерой их упорядоченности. Энтропия системы может быть определена для различных уровней агрегирования ее элементов.

Из изложенных выше рассуждений следует, что для определения состояния и тенденций развития системы необходимо знать, в каком состоянии находится система (устойчивом или неустойчивом) и как при этом меняется энтропия системы.

Эволюционный этап развития, характеризуется устойчивостью системы и увеличением энтропии. Рост энтропии может быть вызван не только ростом числа элементов, но и нарушением связей, упорядоченности системы. В этом случае нарушение связей может привести к тому, что система перестанет выполнять возложенные на нее функции, она будет неспособна к этому в силу своей неорганизованности. Следовательно, рост энтропии не всегда свидетельствует о том, что система повышает свой запас устойчивости. Вблизи точки бифуркации случайные флуктуации могут изменить траекторию движения системы. В зависимости от внешних и внутренних условий система либо деградирует, либо переходит на новый качественный уровень развития. Период зарождения и формирования новой системы связан с потерей устойчивости и возникновением диссипативной структуры, которая сохраняется только благодаря обмену энергией, веществом, информацией с внешней средой. Период зарождения новой системы характеризуется увеличением диссипации. При соблюдении определенных условий в системе могут возникнуть процессы упорядочения структуры, в результате чего энтропия будет уменьшаться и система перейдет в новое устойчивое состояние. На этом один цикл развития заканчивается, начинается следующий - эволюция новой системы. Деградация системы рассматривается в двух аспектах.

В первом случае резко возрастает энтропия, система теряет устойчивость, но перехода в новое устойчивое состояние не происходит. В данном случае отсутствуют регулирующие механизмы (внутренние и внешние), возникает лавинообразный рост энтропии вследствие роста числа новых элементов-признаков и отсутствия когерентного их поведения. Система дезорганизуется и не может выполнять свои функции.

Во втором случае энтропия уменьшается за счет количественных изменений в системе. Система в силу своей гиперустойчивости теряет способность к адаптации и при наличии соответствующих внешних воздействий может разрушиться, т.е. устойчивость отдельных подсистем еще не определяет устойчивость системы в целом.

Устойчивость развивающихся систем мы связываем со структурной устойчивостью и функционированием системы. В данном случае система, не обладающая способностями к адаптации, не может функционировать в меняющихся внешних условиях (А.К.Айламазян).

В зависимости от значений управляющего параметра система может находиться в большом числе устойчивых и неустойчивых режимов. Траектория развития системы характеризуется чередованием устойчивых областей, где доминируют детерминистические законы, и неустойчивых областей вблизи точек бифуркации, где перед системой открывается возможность выбора одного из нескольких вариантов будущего.

И детерминистический характер уравнений, описывающих поведение системы, позволяющих вычислить заранее набор возможных состояний, определить их относительную устойчивость, и случайные флуктуации, "выбирающие" одно из нескольких возможных состояний вблизи точки бифуркации, теснейшим образом взаимосвязаны. Эта смесь необходимости и случайности и составляет "историю" системы.

Модель связывает конкретный этап развития системы со знаком производной энтропии и устойчивостью системы. Модель показывает, что система любой сложности может проходить при соответствующих условиях все этапы развития.

Предлагаемая концептуальная модель развития базируется на одной из основных категорий информатики - энтропии как мере порядка в системе. Поэтому излагаемую концепцию развития систем назовем информационной и выдвинем гипотезу о том, что она применима к системам неживой и живой природы, искусственным, социальным и другим системам.

Глава 5. САМООРГАНИЗАЦИЯ СЛОЖНЫХ СИСТЕМ.
ЭВОЛЮЦИОННЫЕ АСПЕКТЫ ИНФОРМАЦИОННОГО ВЗАИМОДЕЙСТВИЯ СИСТЕМЫ СО СРЕДОЙ

Характерной особенностью развивающихся систем является их способность к самоорганизации, которая проявляется в самосогласованном функционировании системы за счет внутренних связей с внешней средой. Рассматривая развитие как процесс самоорганизации системы, выделим в нем две основные фазы: адаптацию, или эволюционное развитие и отбор. Самоорганизующиеся системы обладают механизмом непрерывной приспособляемости (адаптации) к меняющимся внутренним и внешним условиям, непрерывного совершенствования поведения с учетом прошлого опыта. При исследовании процессов самоорганизации будем исходить из предположения, что в развивающихся системах структура и функция тесно взаимосвязаны. Система преобразует свою структуру для того, чтобы выполнить заданные функции в условиях меняющейся внешней среды.

Адаптация системы к меняющимся условиям происходит благодаря появлению элементов, обладающих необходимыми для функционирования системы свойствами, причем благодаря не просто появлению таких элементов (имеется в виду не только появление новых элементов, но и возникновение у "старых" элементов новых признаков), а избыточности таких элементов-признаков. Увеличение числа сходных элементов лежит в основе прогрессивного развития систем, так как является предпосылкой для дальнейшего отбора элементов, дифференциации и интеграции структур. Вместе с тем увеличение числа сходных элементов - простейшее средство для увеличения надежности воспроизведения, для интенсификации функций и расширения связей с внешней средой. Периоду адаптации (устойчивости системы) соответствует постоянное накопление приспособительных признаков широкого значения, нарастание универсализма системы. В результате флуктуаций в системе возникают регулирующие сигналы, которые изменяют, приспосабливают структуру системы так, чтобы система продолжала функционировать необходимым образом.

Период адаптации - это период эволюционных преобразований, которые связаны лишь с количественными изменениями в системе. Структурная устойчивость при этом не нарушается. Понятие структурной устойчивости играет важную роль в теории самоорганизации.

Концепция структурной устойчивости выражает в наиболее сжатом виде идею нововведений - появление нового механизма и новых элементов. Проблема структурной устойчивости сводится к следующему. Под воздействием флуктуаций (как внутренних, так и внешних) в самоорганизующейся системе появляются приспособительные признаки (это может выражаться в появлении новых признаков у существующих элементов, либо новых элементов, новых взаимосвязей между элементами).

Новая сеть элементов-признаков обеспечивает адаптацию системы к флуктуациям. Если при этом не меняется способ функционирования системы, то такую систему называют структурно устойчивой.

Рене Том обратил внимание на общий характер и важность понятия "структурная устойчивость". Какие же факторы определяют развитие систем, и в частности эволюции? Этот вопрос наиболее полно разрабатывается в рамках биологии. Не ссылаясь на основоположников эволюционной теории, перейдем к анализу результатов исследований в этой области Шмальгаузена, которому удалось связать воедино концепции Кювье, Дарвина, Вернадского. Шмальгаузен берет в качестве главных факторов эволюции изменчивость, борьбу за существование и естественный отбор. Шмальгаузен понимает, что в чистом виде эти факторы не проявляются в природе, что представление о них - это результат научной абстракции, итог определенной мыслительной работы. Вот почему для более полного объяснения действий ведущих факторов эволюции необходимо выявление и других, среди которых - различные виды изоляции, скрещивание, корреляции, индивидуальная адаптация. Особое место при этом он отводит стабилизирующему отбору (А.К.Айламазян).

Для Шмальгаузена в отличие от некоторых других эволюционистов-теоретиков ясно, что абсолютизация какого-то одного из отмеченных факторов неминуемо ведет к неверным и ограниченным теоретическим выводам, гипертрофированному преувеличению значения того или иного момента эволюции. Более того, он специально подчеркивает, что даже на разных этапах эволюции ее факторы проявляются по-разному и соответственно имеют неодинаковое значение.

Другим вопросом, не теряющим своей актуальности, является вопрос о формах эволюции. Шмальгаузен рассматривает его в ходе анализа процесса видообразования и расхождения признаков. При этом он подробно освещает проблему адаптации, наглядно показывая место этого феномена в эволюционном процессе, прослеживая связь адаптации и организации, которая в итоге приводит к их неразрывному единству.



Скачать документ

Похожие документы:

  1. Аруцев Александр Артемьевич, Ермолаев Борис Валерьевич, Кутателадзе Ираклий Отарович, Слуцкий Михаил Семенович

    Документ
    Аруцев Александр Артемьевич,Ермолаев Борис Валерьевич,Кутателадзе Ираклий Отарович,Слуцкий Михаил Семенович КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Предисловие Введение.
  2. Методические рекомендации по изучению теоретического материала

    Методические рекомендации
    Общее землеведение входит в систему географических наук. Оно объединяет знания отдельных как географических, так и негеографических наук в единое представление о планете Земля, как динамично развивающейся системе.
  3. 1 Проблема континуальности и дискретности пространства и времени

    Документ
    Под классическим, следует понимать отношение к пространству и времени, основанное, прежде всего, на «здравом смысле», наглядности и очевидности. Сами по себе эти бесхитростные предпосылки не исключают сложной формализации, основанных
  4. Александр Артемьевич Аруцев, Михаил Семенович Слуцкий, Ираклий Отарович Кутателадзе Концепции современного естествознания

    Учебное пособие
    Учебное пособие написано в соответствии с Государственным стандартом РФ по дисциплине «Концепции современного естествознания», входящей в цикл общих математических и естественнонаучных дисциплин, и предназначено для студентов гуманитарных

Другие похожие документы..