Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Фэй не ошибся. Катон, действительно, был доволен собой и жизнью. Заколов сенатора Меммия кинжалом, украденным у соседей-варваров, он спешно покинул м...полностью>>
'Программа'
В начале 1920-х годов программа научной деятельности музея была разработана при содействии ученых-историков Московского университета и Института горо...полностью>>
'Сказка'
Судьба, несомненно, была дочерью царя Времени, но о матери ее никто толком не знает до сих пор. Ходили слухи, что имя ее благословенной матери было т...полностью>>
'Пояснительная записка'
Для любого руководителя геологического объединения ежегодно встает проблема набора детей, заинтересованных геологией. Большинство педагогов-геологов ...полностью>>

Программы, залаженные в молекуле (1)

Главная > Документ
Сохрани ссылку в одной из сетей:

Тайна жизни

Как вы уже поняли, в последнее время ученые значительно продвинулись в разрешении многочисленных загадок обманчиво простой клеточной мембраны. Но в самых общих чертах ее функции были известны еще двадцать лет назад. Собственно говоря, именно тогда я впервые осознал, что изучение клеточной мембраны имеет далеко идущие последствия. Озарение, которое на меня снизошло, можно сравнить с реакцией перенасыщенного химического раствора. Такие растворы выглядят как обычная вода, но стоит добавить в емкость хотя бы крупинку растворяемого вещества, и оно все целиком выпадает на дно емкости в виде огромного кристалла.

В 1985 году я жил в съемном доме на просоленном карибском острове Гренада и преподавал в тамошней «офшорной» медицинской школе. Было два часа ночи. Я перелопачивал свои многолетние записи по биологии, химии и физике клеточной мембраны, освежая в памяти ее механику и стараясь вникнуть в то, как она обрабатывает информацию. И внезапно на меня снизошло! Нет, я не превратился в кристалл. Я в одночасье стал биологом-«мембрано-центристом», у которого нет морального права растрачивать свою жизнь попусту.

Той ночью я как будто впервые взглянул на основу структурной организации клеточной мембраны — выстроившиеся в ряд, как солдаты на параде, фосфолипидные молекулы. Структуру, молекулы которой организованы регулярным, повторяющимся образом, принято называть кристаллической. Существует два основных типа кристаллов. Те, что знакомы большинству людей, представляют собой твердые, неподатливые минералы — к ним относятся алмазы, рубины и даже обычная соль. Кристаллы второго типа, несмотря на то что их молекулы тоже соединены в регулярную структуру, имеют скорее текучую консистенцию. Хорошо знакомые примеры жидких кристаллов — индикатор электронных часов и экран компьютера-ноутбука.

Чтобы лучше разобраться в том, что представляют собой жидкие кристаллы, вернемся к нашему сравнению с солдатами на параде. Когда марширующие солдаты поворачивают за угол, они сохраняют общий строй, несмотря на то что каждый из них движется индивидуально. Солдаты в строю ведут себя подобно текущей жидкости, но не утрачивают при этом своей «кристаллической» организации. Фосфолипидные молекулы клеточной мембраны ведут себя схожим образом. Их подвижная кристаллическая организация позволяет клеточной мембране динамически менять форму, сохраняя при этом свою целостность. Вот почему мембранный барьер обладает гибкостью. Я записал определение этой характеристики клеточной мембраны: «Мембрана — жидкий кристалл».

Затем я стал думать дальше. Мембрана, состоящая из одних только фосфолипидов, — это аналог хлеба с маслом, без оливок. Но тогда, если следовать логике описанного выше опыта с подкрашенной жидкостью и бутербродом, масляный (липидный) барьерный слой мембраны был бы абсолютно непроницаемым — непроводящим. Мембрана становится проводящей для одних веществ и непроводящей для других, когда в игру вступают «оливки» — интегральные мембранные белки. Я написал: «Мембрана — полупроводник».

Потом я вспомнил про две наиболее распространенные разновидности интегральных мембранных белков. Таковыми являются белки-рецепторы и белки-эффекторы, называемые канальными; именно они позволяют мембране выполнять свою важнейшую функцию — пропускать внутрь клетки питательные вещества и выпускать наружу шлаки. Я уже готов был написать, что мембрана содержит «рецепторы и каналы», но тут до меня дошло, что рецепторы в данном случае — это, по сути, вентили. Соответственно, я закончил свое описание мембраны фразой: «Мембрана содержит вентили и каналы».

Я откинулся на спинку кресла и перечитал то, что у меня получилось: «Мембрана — это жидкокристаллический полупроводник, содержащий вентили и каналы». Эта фраза как будто меня ударила. Определенно, я уже слышал или читал нечто подобное. Но где именно? Впрочем, в одном я был абсолютно уверен: там говорилось отнюдь не о биологии.

Я стал осматриваться и взглянул на угол письменного стола, где возвышался новенький «Макинтош» — мой первый персональный компьютер. Рядом с «Макинтошем» лежала ярко-красная книжка; заголовок на ее обложке гласил: «Как работает ваш компьютер». Это было купленное мною на днях справочное руководство для пользователей. Схватив книжку, я пробежал глазами введение и почти сразу наткнулся на определение: «Микрочип — это полупроводниковый кристалл с электрическими вентилями и каналами».

Пару секунд я сидел, огорошенный столь невероятным совпадением. Затем я стал лихорадочно сопоставлять и противопоставлять клеточные мембраны и кремниевые полупроводники. Скоро мне стало ясно, что сходство определений компьютерного чипа и клеточной мембраны не случайно! Клеточная мембрана в самом деле гомологична кремниевой микросхеме, то есть — представляет собой ее структурный и функциональный эквивалент! Вот это был уже настоящий шок.

Двенадцать лет спустя коллектив австралийских исследователей, возглавляемый Б. А. Корнеллом, опубликовал в журнале «Нэйчур» статью, которая подтвердила мою гипотезу гомологичности клеточной мембраны и компьютерного чипа [Cornell, et al, 1997]. Они выделили клеточную мембрану, присоединили к ней снизу кусочек золотой фольги и заполнили пространство между мембраной и фольгой электролитическим раствором. При стимуляции соответствующим электрическим сигналом мембранные каналы открывались и позволяли электролиту пройти сквозь мембрану. При этом фольга играла роль датчика, благодаря которому электрическая активность мембранных каналов могла быть измерена и отображена в виде показаний цифрового прибора. Иными словами, Корнеллу и его коллегам удалось встроить биологическую клеточную мембрану в электронное устройство с цифровой индикацией в качестве чипа.

Ну и что? — спросите вы. А то, что гомологичность клеточной мембраны и компьютерного чипа доказывает правомерность сравнения живой клетки с персональным компьютером. Первая сногсшибательная мысль, которая при этом приходит в голову, такова: клетки, подобно компьютерам, программируемы! И так же как и в случае с компьютером, их «программист» находится снаружи. Поведение и генная активность клетки динамически обусловлены информацией, поступающей из окружающей среды.

Как только в моем воображении возник клеточный биокомпьютер, я понял, что ядро клетки — это своего рода «съемный диск» (назовем его Двуспиральным Диском) — носитель информации, на котором записаны ДНК-программы, кодирующие производство белков. Записанные на съемном диске программы — текстовые редакторы, графические редакторы, электронные таблицы и тому подобное — вы можете загрузить в память своего домашнего компьютера и затем извлечь его безо всякого ущерба для работы.

Точно так же, когда вы удаляете из клетки ядро — ее Двуспиральный Диск, работа белковой машины клетки продолжается как ни в чем не бывало, поскольку информация, необходимая для создания белков, уже была загружена. Энуклеированные клетки сталкиваются с трудностями только тогда, когда у них возникает необходимость в генных программах с извлеченного Двуспирального Диска, позволяющих им заменить имеющиеся белки или синтезировать новые.

Полученное мной биологическое образование было не менее «ядроцентристским», чем геоцентристское астрономическое образование Коперника. Поэтому мне потребовалось определенное усилие, чтобы осознать: «центральным процессором» клетки является отнюдь не ядро, в котором содержатся гены. Данные вводятся в клеточный «компьютер» через посредство мембранных белковрецепторов — клеточной «клавиатуры», а они, в свою очередь, приводят в действие мембранные белкиэффекторы, которые и играют роль «центрального процессора». Этот «центральный процессор» преобразует информацию, поступающую из окружающей среды, в язык поведения клетки.

Меня охватило отчаяние — мне не с кем было разделить свой восторг. В моем доме отсутствовал телефон. Но ведь я — преподаватель медицинской школы. Наверняка в это время в библиотеке отыщется кто-нибудь из студентов. Кое-как одевшись, я побежал в сторону школы', чтобы рассказать кому-нибудь — ну хоть кому-нибудь! — о своем великом озарении.

Представляю, как я выглядел, когда появился в помещении библиотеки — запыхавшийся, с вытаращенными глазами. Думаю, те, кто там был, узрели живое воплощение пресловутого «рассеянного профессора». Я подбежал к одному из первокурсников-медиков и воскликнул: «Только послушай, что я сейчас скажу! Что-то невероятное!» Помню, как парень от меня отшатнулся. Это меня не остановило. Я принялся втолковывать ему свои новые представления о клетке обычным для цитобиологов мудреным жаргоном. Затем я умолк, ожидая то ли его поздравлений, то ли криков «браво». Мальчишка сидел с открытым ртом. «С вами все в порядке, доктор Липтон?» — только и смог выговорить он.

Я был уничтожен. У меня в руках ключ к тайне жизни, но все мои объяснения пошли прахом! Уже потом, задним числом я понял — этот бедолага студент, едва отучившийся первый семестр, попросту не мог разобраться в том, что я говорил ему с таким пафосом. Впрочем, должен признать, что я не имел особого успеха и у большинства своих коллег, вполне поднаторевших в зубодробительной терминологии.

В течение последующих лет я продолжал свои исследования и постепенно научился излагать собственные идеи так, что их могли воспринять не только студенты-первокурсники, но и люди в принципе далекие от биологии. У меня появились благодарные слушатели — как среди специалистов, так и среди непрофессионалов. Некоторые из них даже оказались воеприимчивыми к проистекавшим из моего озарения духовным идеям. В самом деле, «мембраноцентрическая» биология — это великолепно, но вряд ли бы она заставила меня с криками нестись в библиотеку. Та карибская ночь не только преобразила меня как ученого; благодаря ей я, убежденный агностик, превратился в мистика, верящего в то, что жизнь вечна и не ограничивается сроками существования нашего бренного тела.

О духовном измерении излагаемой здесь истории я расскажу в эпилоге, а пока хочу еще раз повторить урок волшебницы-мембраны: мы не рабы комбинации генетических игральных костей, случайно выпавшей нам при рождении. Мы способны редактировать данные, вводимые в наш биокомпьютер, точно так же, как я сейчас управляю работой программы-редактора, в которой пишу эти строки. Стоит нам понять, как интегральные мембранные белки управляют нашей физиологией, и мы из беспомощных жертв своих генов станем хозяевами собственной судьбы!

Глава 3

Новая физика:

прочная опора на пустоту

В 1960-х годах, будучи амбициозным студентом-биологом, я понимал: чтобы получить работу на престижной кафедре, мне необходимо прослушать курс физики. В моем колледже преподавали общую физику на уровне, доступном студентам нефизических специальностей. Был еще один курс — квантовой физики, но мы, биологи, бежали от него как от чумы. По нашему мнению, только мазохисты могли, рискуя испортить себе оценки, записываться на курс, который следовало назвать: «Вот оно есть... а вот его и нет!»

Единственной причиной, которая могла бы побудить меня слушать лекции по квантовой физике, было то, что это давало солидные преимущества при общении с девушками. О, в те годы считалось особенным шиком сказать: «Привет, малышка, я занимаюсь квантовой физикой. А кто ты по знаку зодиака?» Однако я сомневался, что это и вправду сработало бы, — мне почему-то не приходилось встречать физиков на вечеринках. Похоже, они нечасто развлекались подобным образом.

В общем, я решил пойти по простому пути и записался на вводный курс общей физики. Мне не хотелось ставить свои карьерные перспективы в зависимость от настроения какого-нибудь полу сумасшедшего дядьки, поющего дифирамбы эфемерным бозонам и кваркам. В итоге я, как и большинство студентов-биологов, узнал о существовании тяготения: то, что тяжелей, стремится оказаться внизу, а то, что легче, — наверху. Что-то я узнал и о свете: присутствующий в растениях хлорофилл и имеющийся в сетчатке глаза животных и человека пигмент родопсин поглощают лучи света некоторых цветов и остаются «слепы» к другим цветам. Я даже узнал кое-что о температуре: при низких температурах биологические ткани замерзают и хорошо сохраняются, а при высоких — оттаивают и портятся. Вот, собственно говоря, и все. (Надеюсь, вы понимаете, что, рассуждая о том, как плохо биологи знают физику, я все-таки несколько преувеличиваю.)

То, что, отвергнув представления о главенстве клеточного ядра и перейдя к «мембраноцентристской» биологии, я попросту не представлял себе последствия такого шага, можно объяснить только моим невежеством по части квантовой физики. Мне было известно, что интегральные мембранные белки, взаимодействуя с сигналами окружающей среды, снабжают клетку энергией. Но я не мог объяснить природу этих сигналов, поскольку ничего не знал о мире квантов.

Я понял, как много потерял из-за того, что пренебрег квантовой физикой, лишь в 1982 году — через десять с лишним лет после окончания университета. Уверен, доведись мне познакомиться с ней еще в студенческие годы, я бы пришел к своему биологическому инакомыслию гораздо раньше.

Итак, вернемся в 1982 год. Я сижу на бетонном полу мрачного складского ангара в Беркли, в полутора тысячах миль от дома, и чувствую себя полным ничтожеством. Мыслимое ли дело — променять карьеру ученого на роль бездарного организатора рок-н-ролльных концертов? Теперь мы на мели — шесть провальных выступлений оставили нас без денег. Наличность в моем кармане иссякла. Я попытался расплатиться кредитной карточкой, но терминал в магазине пригрозил мне, показав череп со скрещенными костями. Мы перебивались кофе и пончиками и проходили описанные Элизабет Кюблер-Росс стадии умирания своего шоу — отрицание, протест, просьба об отсрочке, депрессия и, наконец, смирение... [Kubler-Ross 1997]. Внезапно покой нашего бетонного склепа был взорван пронзительным телефонным звонком. Телефон издавал отвратительные трели, но никто из нас даже не пошевелился.

Не вытерпел заведующий складом: «Ага, он здесь». Подняв голову, я посмотрел вверх со дна моей жизни и увидел протянутую мне телефонную трубку. Звонил ректор медицинской школы на Карибах, с которой я сотрудничал двумя годами ранее. Он двое суток потратил на то, чтобы отследить мои судорожные перемещения из Висконсина в Калифорнию. Зачем? Чтобы спросить, не соглашусь ли я снова заняться преподаванием.

Не соглашусь ли я? Согласится ли рыба вернуться в воду? «Когда?» — возопил я. «Вчера», — хмыкнул он. «Да, да, с удовольствием, но мне нужен аванс». В тот же день мне перечислили деньги, и я поделился ими с музыкантами моей группы. Затем я помчался в Мэдисон, чтобы попрощаться с дочерьми и наскоро упаковать чемоданы. Спустя двадцать четыре часа я маялся в Чикагском аэропорту в ожидании рейса в сады Эдема.

Полагаю, вы уже не раз задали себе вопрос: какого черта я приплел к квантовой физике свои рок-н-ролльные неудачи? Все очень просто — таковы особенности моего лекционного стиля. А для тех, кто привык мыслить прямолинейно, объявляю: сейчас мы вернемся к квантовой физике, благодаря которой я понял, что мысля прямолинейно, мы никогда не проникнем в тайны Вселенной.

Прислушиваясь к внутреннему голосу

За считанные минуты до того, как за мной должны были закрыться двери посадочного выхода, я сообразил, что мне предстоит провести пять часов пристегнутым к креслу, а у меня нет ничего почитать. Я выскочил из очереди и побежал через вестибюль к книжному лотку. Мне надо было выбрать одну книгу из нескольких сотен и при этом не опоздать на самолет. Знаете, это может ввергнуть в ступор кого угодно. Я замер перед книжным лотком в замешательстве. Мой взгляд остановился на одной из обложек: Хайнц Пагельс, «Космический код: квантовая физика как язык природы» [PageJs 1982]. Пробежав глазами аннотацию, я узнал, что автор вознамерился популярно рассказать широкой аудитории о квантовой физике. Испытываемый мной еще со времен колледжа страх перед этим предметом заставил меня отложить книгу в сторону.

Когда стрелка тикавшего в моей голове секундомера достигла красного сектора, я схватил с лотка какойто сомнительный бестселлер и метнулся к кассе. Продавец принялся выбивать чек. И тут я увидел на полке у него за спиной еще один экземпляр «Космического кода». Не знаю, что заставило меня преодолеть отвращение к квантовой физике, но я таки купил эту книгу.

В самолете, устроившись в кресле и отдышавшись после набега на книжный лоток, я решил кроссворд и взялся за «Космический код». Книга увлекла меня настолько, что я перечитывал некоторые ее главы по второму разу. Если бы книжные страницы можно было прожечь взглядом, случился бы пожар. Я читал не отрываясь, пока самолет находился в воздухе, затем три часа в ожидании пересадки в аэропорту Майами и еще пять часов пути к своему островному раю.

До того, как я сел в самолет в Чикаго, мне и в голову не могло прийти, что квантовая физика имеет отношение к биологии. Сходя с самолета на Райском Острове, я кипел от возмущения из-за того, что биологи ее игнорируют. Ведь квантовая физика — основа основ всех наук! Мы же вцепились зубами в устаревшую ньютоновскую модель мироустройства и не желаем знать о незримом квантовом мире Эйнштейна, где материя — это энергия и нет ничего абсолютного.

Это сейчас мне ясно, что биология ньютоновского толка попросту неспособна поведать нам правду о человеческом теле, не говоря уже о жизни как таковой, и никакие открытия из области механики химических сигналов — гормонов, цитокинов (гормонов, управляющих иммунной системой), факторов роста и опухолевых суппрессоров не делают более понятными ни случаи спонтанного исцеления, ни экстрасенсорные феномены, ни способность не обжигаясь ходить по раскаленным углям. А в те годы я, как и мои коллеги, учил студентов не обращать внимания на болтовню о целительной силе акупунктуры, мануальной терапии и молитвы и считал шарлатанством все, что не умещалось в ньютоновскую картину мира.

Иллюзия материи

Ближе познакомившись с квантовой физикой, я понял, что наше пренебрежительное отношение к упомянутым выше энергетическим целительским практикам уподобляло нас заведующему кафедрой физики Гарвардского университета из книги Гэри Зукава «Танцующие мастера У Ли» [Zukav 1979], который в 1893 году, незадолго до открытия субатомных элементов убеждал студентов в том, что Вселенная представляет собой машину, составленную из подчиняющихся механике Ньютона отдельных атомов.

На рубеже XIXXX веков, после того как выяснилось, что атомам присущи такие «странности», как способность испускать рентгеновское и радиоактивное излучение, появилась новая порода физиков, поставивших перед собой цель исследовать взаимосвязи энергии со структурой материи. За следующие десять лет они поняли, что мир состоит не из подвешенного в пустом пространстве вещества, а из энер­гии, и отказались от веры в материальную Вселенную, подчиняющуюся законам Ньютона,

Квантовая физика говорит, что атомы состоят из энергетических вихрей; каждый атом подобен вращающемуся и раскачивающемуся волчку, излучающему энергию. И поскольку всякому атому присущ свой собственный уникальный энергетический спектр, их соединения (молекулы) также излучают характерные только для них энергии. Это касается всех материальных образований во Вселенной, включая нас с вами.

Если бы существовала возможность рассмотреть строение атома в «атомный» микроскоп — что бы мы увидели? Представьте себе движущийся по пустыне пылевой вихрь-торнадо. Теперь мысленно уберите из этого вихря весь песок и всю пыль. У вас останется невидимая вращающаяся воронка. Так вот, в действительности атом состоит из множества подобных, бесконечно малых энергетических воронок, называемых кварками и фотонами.


Издали атом покажется вам слегка размытой прозрачной сферой. Давайте попробуем к нему приблизиться. Как это ни удивительно, он будет становиться все менее определенным. Когда же вы подойдете к атому вплотную, он исчезнет. Вы не увидите ничего. Чем пристальней вы станете всматриваться в структуру атома, тем верней будете наблюдать одну только физическую пустоту. Оказывается, у атома нет материальной структуры — король голый!

Помните модель атома, которую вы изучали в школе, — крутящиеся шарики, напоминающие солнечную систему в миниатюре? Давайте-ка сопоставим эту модель с квантово-механическими представлениями о структуре атома (см. стр. 113).

Нет-нет, это не типографский брак. Атомы сделаны не из материи, а из невидимой энергии!

Итак, в нашем мире материальная субстанция (материя) возникает из ничего. Довольно странно, если вдуматься. Сейчас у вас в руках вот эта вполне вещественная книга. Но если бы у вас была возможность всмотреться в ее структуру с помощью «атомного» микроскопа, вы обнаружили бы, что держите пустоту. Да уж, если мы, студенты-биологи в свое время и были в чем-то правы, так это в том, что квантовая физика — штука головоломная.

Давайте разберемся с пресловутым девизом квантовой физики «Вот оно есть... а вот его и нет». О материи можно сказать, что она одновременно является плотной субстанцией (частицами) и нематериальным силовым полем (волнами). Когда ученые изучают атомы как материальные частицы, те выглядят и ведут себя как физическая материя. Но если их начинают описывать в терминах электрических потенциалов и длин волн, они проявляют свойства энергии (волн) [Hackermuller, et al, 2003; Chapman, et al, 1995; Pool 1995]. Знаменитое уравнение Эйнштейна E = мс2 устанавливает фактическое тождество материи и энергии. Согласно этому уравнению, Е — энергия, равна т (массе) — то есть материи, умноженной с2 — возведенной в квадрат скорости света. Это означает, что мир, в котором .мы живем, — отнюдь не скопище дискретных, плотных объектов, разделенных мертвым пространством. Вселенная — неделимое динамичное целое, материю и энергию которого невозможно рассматривать как независимые друг от друга элементы.

Это не побочные эффекты.

Это — эффекты!

Если бы биологи и врачи имели представление об открытиях в области квантовой физики, они бы иначе смотрели на болезни и здоровье человека. Но их учили и продолжают учить видеть в человеческом теле машину, функционирующую в соответствии с ньютоновскими принципами. Вот почему они, исследуя в мельчайших подробностях механизмы этой машины, к числу которых относятся уже упоминавшиеся гормоны, цитокины, факторы роста, опухолевые суппрессоры и т. д., продолжают игнорировать роль энергии в процессах жизнедеятельности.

Биологи традиционного толка — редукционисты. Они полагают, что механику наших физических тел можно постичь, изучая химические «кирпичики», из которых построены клетки. С редукционистской точки зрения, биохимические реакции, которые лежат в основе процессов жизнедеятельности, подобны фордовскому сборочному конвейеру: некое конкретное вещество запускает реакцию, вслед за которой проис­ходит другая реакция с участием другого вещества и т. д. Эта линейная модель от А к В, затем к С, D и Е, схематически изображенная на следующей иллюстрации, предполагает, что, если в организме возникает сбой, проявляющийся в виде симптомов болезни, его нужно искать на том или ином участке вышеописанного химического конвейера. Отсюда следует вывод: чтобы устранить «неполадку» и восстановить здоровье, достаточно произвести функциональную замену дефектной «детали», например, с помощью таблеток или специально сконструированных генов.

С квантовомеханической точки зрения, Вселенная есть совокупность взаимозависимых энергетических полей, взаимодействия которых переплетаются в замысловатую паутину. Иными словами, в квантовомеханической Вселенной процессы не линейны, а



Скачать документ

Похожие документы:

  1. Программы, залаженные в молекуле (2)

    Документ
    «Биология веры» — одна из важнейших вех Новой Науки. Исследовав процессы информационного обмена в клетках человеческого тела, ученые пришли к выводам, которые должны радикально изменить наше понимание Жизни.
  2. Брюс Липтон Биология веры: Недостающее звено между Жизнью и Сознанием

    Документ
    «Биология веры» — одна из важнейших вех Новой Науки. Исследовав процессы информационного обмена в клетках человеческого тела, ученые пришли к выводам, которые должны радикально изменить наше понимание Жизни.

Другие похожие документы..