Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Согласно определениям экспертов Международного Союза чистой и прикладной химии (1993) и Всемирной Организации здравоохранения (1981), под внутрилабор...полностью>>
'Конкурс'
- повышение эффективности и качества проводимой работы по профилактике наркомании, алкогольной, табачной и иных зависимостей, ВИЧ/СПИДА, пропаганде з...полностью>>
'Руководство'
Настоящее руководство издано Благотворительным фондом помощи детям «Теплый дом» в рамках проекта «Тренинговый центр поддержки и активизации семьи» в ...полностью>>
'Учебно-методический комплекс'
Учебно-методический комплекс по дисциплине «Микроэкономика» подготовлен в соответствии с требованиями действующего государственного образовательного ...полностью>>

Главная > Документ

Сохрани ссылку в одной из сетей:

1.2. Создание первого источника электрического тока

В

Рис. 1.1- Вольтов столб

Алессандро Вольта

(1745 – 1827)

течение 1792 – 1795 гг. Вольта исследовал те явления, которые Гальвани назвал «животным» электричеством. Он установил, что даже очень незначительные электрические силы способны вызывать сильные содрогания всех членов лягушки, особенно лап. «Электрическая сила, – писал Вольта, – не могущая дать ни малейшей искры, не оказывающая действия на чувствительные беннетовы электроскопы, производит сильнейшее содрогание в лапках. Лягушка, приготовленная по способу Гальвани, есть чувствительнейший электрометр». Этим Вольта правильно указал на то, какую роль играла лягушка в опытах Гальвани. Источником электричества, по мнению Вольта, является контакт двух разнородных металлов.

Таким образом, Вольта создал теорию «контактного» электричества. Эта теория утверждала, что при соприкосновении различных металлов происходит разложение их «естественного» электричества; при этом электричество одного знака собирается на одном металле, а другого – на другом. Силу, возникающую при контакте двух металлов и разлагающую их «естественное» электричество, Вольта назвал электровозбудительной или электродвижущей силой; эта сила «перемещает электричество так, что получается разность напряжений» (между металлами).

Произведя исследование этого вопроса при помощи созданного им весьма чувствительного прибора – электроскопа с конденсатором, Вольта установил, что металлы можно распределить в некоторый ряд, в котором «разность напряжений» между двумя металлами будет тем больше, чем дальше они расположены друг от друга.

С современной точки зрения теория контактного электричества, предложенная Вольта, была ошибочной. Высказав мысль о там, что для получения электрического тока достаточно лишь простого контакта между разнородными металлами, Вольта стал на антинаучную позицию о возможности непрерывного получения энергии в виде гальванического тока без затраты для этого какого-либо другого вида энергии. Однако в начале прошлого века эта теория контактного электричества нашла многих сторонников и на некоторое время удержалась в науке.

Многочисленные эксперименты привели Вольта к выводу, что непрерывный электрический ток может возникнуть лишь в замкнутой цепи, составленной из различных проводников – металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).

Опыты Вольта завершились построением в 1800 г. первого источника непрерывного электрического тока, составленного из медных и цинковых кружков (пар), переложенных суконными прокладками, смоченными водой или кислотой. Этот прибор известен под названием вольтова столба (рис. 1.1).

Необходимость применения проводников второго класса (суконных кружков, смоченных водой или кислотой) Вольта объяснял следующим: при соприкосновении двух различных металлов электричество одного знака сосредоточивается на одном металле, а электричество противоположного знака – на другом. Если составить столб из нескольких пар различных металлов, например цинка и серебра (без прокладок), то каждая цинковая пластина будет находиться в соприкосновении с одинаковыми серебряными пластинами, и их общее действие будет взаимно уничтожаться.

Для того чтобы действие отдельных пар суммировалось, необходимо обеспечить соприкосновение каждой цинковой пластинки только с одной серебряной. Это осуществляется с помощью проводников второго рода – суконных кружков, смоченных водой или кислотой, разделяющей пары металлов и не препятствующих движению электричества. Таким образом, Вольта, не понимая того, что электрический ток возникает в результате химических процессов между металлами и жидкостями, практически пришел к созданию гальванического элемента, действие которого основывалось именно на превращении химической энергии в электрическую. Хотя Вольта и заметил, что поверхности приведенных в контакт разнородные металлов, составляющих гальваническую пару, подвергаются изменению – окисляются, тем не менее он не придал этому факту никакого значения.

Вольта предложил, кроме столба, еще и несколько иную конструкцию источника электрического тока – так называемую чашечную батарею (рис. 1.2), действие которой, по его мнению, также было основано на контакте между двумя металлами (роль влажной суконной прокладки столба заменяла жидкость). Чашечная батарея представляла собой соединение отдельных элементов, имевших форму банок, наполненных разбавленной серной кислотой, в которую погружались медная 1 и цинковая 2 пластины. Кроме предложенных Вольта конструкций источника электрического тока вскоре были разработаны некоторые другие его модификации.

А

Д. Ф. Араго

(1786 – 1853)

раго, написавший биографию Вольта, называет вольтов столб «самым замечательным прибором, когда-либо изобретенным людьми, не исключая телескопа и паровой машины». В этом определении нельзя усматривать преувеличения. Вольтов столб – это первый источник непрерывного электрического тока, сыгравший громадную роль как в развитии науки об электричестве, так и в расширении его практических приложений.

Рис. 1.2. Чашечная батарея Вольта

Вольтов столб в различных своих модификациях долгое время оставался самым распространенным источником электрического тока, крупнейшие ученые первой половины XIX в. – Петров, Дэви, Ампер, Фарадей – широко применяли вольтов столб для своих опытов.

1.3. Обнаружение и изучение действия электрического тока

Первые же опыты с электрическим током не могли не привести к открытию некоторых присущих ему свойств. Поэтому рассматриваемый период в истории электричества характеризуется главным образом обнаружением и изучением различных действий электрического тока. Исследования электрического тока, производившиеся в большом масштабе в первые годы XIX в., привели к открытию химических, тепловых, световых и магнитных его действий.

В марте 1800 г. Вольта сообщил о своих работах президенту Лондонского королевского общества, и вскоре члены этого общества Карлейль и Никольсон произвели ряд опытов с вольтовым столбом, которые привели их к открытию нового явления: при прохождении тока через воду имело место выделение газовых пузырьков; исследовав выделявшиеся газы, они правильно установили, что это кислород и водород. Таким образом, впервые был осуществлен электролиз воды. Вскоре после опубликования работ Карлейля и Никольсона (июль 1800 г.) появилась в немецком научном журнале «Annalen der Physik» статья немецкого физика И. Риттера, также осуществившего разложение воды током. После открытия действия тока на воду ряд ученых заинтересовался вопросом о том, к каким результатам приведет пропускание тока через другие жидкости. В том же 1800 г. голландский химик Крейкшенк, пропуская ток через раствор поваренной соли, получил на отрицательном полюсе едкий натр, не подозревая, что здесь имела место вторичная реакция: поваренная соль разлагалась на Na и С1, причем натрий, жадно соединяясь с водой, образовывал едкий натр.

Указанные эксперименты положили начало исследованию химических действий гальванического тока, получивших впоследствии важное практическое применение.

Тепловые действия тока были обнаружены в накаливании тонких металлических проводников и воспламенении посредством искр легко воспламеняющихся веществ. Световые явления наблюдались в виде искр различной длины и яркости.

В 1802 г. итальянский физик Романьози обнаружил, что электрический ток, протекающий по проводнику, вызывает отклонение свободно вращающейся магнитной стрелки, находящейся вблизи этого проводника. Однако тогда, в первые годы изучения электрического тока, явление, открытое Романьози, имевшее, как впоследствии выяснилось, громадное значение, не получило должной оценки. Только позднее, в 1820 г., когда наука об электричестве достигла более высокого уровня, магнитное действие тока, описанное Эрстедом, стало предметом глубокого и всестороннего изучения.

Среди многочисленных исследований явлений электрического тока, произведенных в первые годы после построения вольтова столба, наиболее выдающимися были труды академика В. В. Петрова, так как в них впервые была показана и доказана возможность практических применений электричества.

В своих трудах по электричеству Петров собрал обширный опытный материал, который им был тщательно проанализирован. Петров глубоко понимал значение эксперимента для всестороннего изучения явлений природы. Он писал: «...гораздо надежнее искать настоящего источника электрических явлений не в умствованиях, к которым доселе только прибегали почти все физики, но в непосредственных следствиях самих опытов».

Будучи хорошо знакомым с опытами, производящимися с вольтовым столбом как в России, так и за границей, Петров пришел к правильному выводу о том, что наиболее полное и всестороннее изучение гальванических явлений возможно только при условии создания большой батареи, т. е. по современной терминологии – источника тока высокого напряжения. Поэтому он добивается перед руководством Медико-хирургической академии, профессором физики которой он состоял, выделения средств для постройки «такой огромной величины батареи, чтобы оною можно было надежнее производить такие новые опыты», каких не производил никто из физиков.

В

Рис. 1.3. Схема расположения и соединения элементов в батарее Петрова: 1 – деревянный ящик; 2 – медный кружок; 3 – цинковый кружок; 4 – прокладка; 5 – медные дужки

апреле 1802 г. батарея В. В. Петрова, состоявшая из 4200 медных и цинковых кружков или 2100 медно-цинковых элементов (Петров называл ее «огромная наипаче батарея»), была готова. Она располагалась в большом деревянном ящике, разделенном по длине на четыре отделения (рис. 1.3). Стенки ящика и разделяющих перегородок были покрыты сургучным лаком. Общая длина гальванической батареи Петрова составляла 12 м – это был крупнейший в мире источник электрического тока. Как показали современные экспериментальные исследования с моделью батареи Петрова, электродвижущая сила этой батареи составляла около 1700 В, а максимальная полезная мощность 60 – 85 Вт. Ток короткого замыкания батареи не превышал 0,1 – 0,2 А. В. В. Петров вначале производил, как он указывал, уже известные опыты других физиков, а после старался производить и такие опыты, «...о которых дотоле не имел... никакого известия».

Свои разнообразные опыты Петров подробно описал в книге «Известие о гальвани-вольтовских опытах», которая вышла в СПБ в 1803 г. (рис. 1.4). Это была первая книга на русском языке, посвященная исследованиям в области гальванизма.

Следует отметить, что и за границей не только до выхода в свет книги Петрова, но и в течение двух ближайших десятилетий не появилось ни одного оригинального сочинения, в котором были бы с такой полнотой освещены явления электрического тока.

Петрову было хорошо известно, с каким интересом относятся в России к изучению явлений электрического тока. Поэтому он в своей книге подробно описал не только опыты с гальванической батареей, но и способы ее изготовления, ухода за ней, методику экспериментов и т. п.

В книге Петрова изложены его опыты по электролизу различных жидкостей, исследованию явлений прохождения электрического тока в разреженном воздухе, наблюдению «светоносных» явлений, сопровождающих действие электрического тока, изучению тепловых действий тока.

Петров произвел всесторонние исследования свойств созданной им батареи как источника электрического тока. Опираясь на результаты опытов, он подошел к пониманию того, что действие батареи основано на химических процессах, происходящих в гальваническом элементе медь – цинк, и впервые правильно установил роль крайних металлических кружков, которые служили лишь проводниками электричества. Петров также верно указал на то, что окисление поверхности металлических кружков вызывает ослабление действия батареи. Эти выводы Петрова по существу опровергали «контактную» теорию электричества, однако сам Петров не выступал с таким опровержением.

Рис. 1.4. Титульный лист книги Петрова «Известие о гальвани-вольтовских опытах»

Петровым была впервые установлена важнейшая закономерность в электрической цели – зависимость тока в проводнике от площади поперечного сечения проводника, Он правильно указал на то, что при увеличении сечения проводника ток в нем возрастает. Поэтому Петров является самым ранним среди предшественников Ома, сформулировавшего в 1827 г. известный закон, носящий его имя. Петров установил, что через вещества, обладающие большим сопротивлением, гальвани-вольтовская жидкость (так он называл электрический ток) может протекать лишь тогда, когда «количество ее весьма знатно увеличится», т. е. по современной терминологии при повышении напряжения в цепи.

Наибольший интерес из всех работ Петрова представляет открытие им в 1802 г. явления электрической дуги «между двумя угольными электродами, соединенными с полюсами созданного им источника высокого напряжения. Создание им источника высокого напряжения явилось необходимым условием для получения устойчивой электрической дуги при небольших токах. Указывая на возможность широкого практического применения электрической дуги, Петров писал, что пламенем дуги «темный покой довольно ясно освещен быть может», что в пламени дуги различные «металлы иногда мгновенно расплавляются, сгорают...», что «посредством огня» дуги он превращал окислы различных металлов в «металлический вид». Следовательно, опыты Петрова давали прямое указание на возможность применения электричества для целей освещения, плавки металлов и восстановления металлов из их окислов.

До В. B. Петрова никто так ясно и четко не указывал на возможность практического применения электричества. Поэтому В. В. Петров является одним из основоположников электротехники.

До Петрова физики не могли наблюдать явления дуги, так как они употребляли небольшие гальванические батареи, состоявшие большей частью из 100 – 200 элементов; э. д. с. таких батарей были недостаточны для получения устойчивой дуги при огромных внутренних сопротивлениях батарей того времени. Известному английскому ученому X. Дэви удалось получить электрическую дугу только в 1808 г., когда им была построена большая гальваническая батарея, состоявшая из 12000 элементов. Подробное описание явления электрической дуги Дэви дал в 1812 г., при этом он сам ни в какой степени не претендовал на первенство в открытии этого явления.

В. В. Петровым было положено начало всестороннему исследованию явлений электрического разряда в вакууме (рис. 1.5). Он установил зависимость этих явлений от материала, формы и полярности электродов, расстояния между ними и степени вакуума. Позднее эти выводы получили подтверждение и развитие в трудах других ученых, в частности М. Фарадея.

Пропуская электрический ток через разные жидкости и тела, Петров внимательно исследовал влияние материала и формы электродов на протекающие процессы; он применял самые разнообразные электроды: железные, серебряные, медные, оловянные, золотые, древесноугольные, графитовые, марганцевые и др. Петровым была правильно определена степень электропроводности некоторых веществ (древесного угля, льда, серы, фосфора, растительных масел) и выявлены их физико-химические свойства.

Петров впервые применил параллельное соединение электродов для демонстрации явления электролиза в нескольких трубках с водой, происходящего одновременно при пропускании электрического тока через жидкости (рис. 1.6).

Работа Петрова с источником тока высокого напряжения неизбежно привела его к выводу о важном значении изоляции проводов; им было предложено изготовлять электрические проводники, покрытые сургучом или воском. Разработанный Петровым принцип изоляции проволочных проводников, заключающийся в покрытии их поверхности изолирующим слоем, нашел дальнейшее развитие в производстве кабельных изделий. Петров пришел к правильному выводу о высоких электроизоляционных свойствах жирных (растительных) масел.

Рис. 1.5. Схема опыта Петрова по наблюдению электрического разряда в вакууме

Рис. 1.6. Схема параллельного соединения электродов, предложенная Петровым


Петров явился одним из первых физиков, высказавших правильный взгляд об общности и различии в проявлениях статического и гальванического электричества. Он сделал попытку выяснить сущность электрических явлений, установить причины образования электричества, однако при современном ему состоянии науки такую задачу решить было невозможно. Заслуживает внимания мысль Петрова о том, что электрические явления обусловлены определенными физико-химическими процессами.

Труды Петрова были хорошо известны его современникам и изучались русскими физиками первой трети XIX в. Широкое распространение трудов Петрова в России оказало большое влияние на развитие науки об электричестве, на расширение практических применений электричества. Среди учеников Петрова были талантливый физик и химик С. П. Власов, академик И. X. Гамель, профессор И. Е. Грузинов, С. В. Большой и др.

Первые электрохимические опыты, произведенные вскоре после изобретения вольтова столба, вызвали значительный интерес к этим вопросам. Специальному исследованию электрохимических явлений были посвящены труды английского ученого X. Дэви, имевшие важное значение для практики. Дэви доказал своими опытами несостоятельность мнений, господствовавших в то время среди ученых, что при электролизе воды на одном полюсе получается кислота, а на другом основание. Он показал, что кислоты и основания, получаемые при электролизе, являются продуктами последующих вторичных реакций. Повторив опыты разложения воды в разных условиях (стеклянные, агатовые и золотые сосуды; в воздухе и в атмосфере водорода), Дэви доказал, что пресная вода разлагается при электролизе только на кислород и водород, причем объем водорода, образующегося при этом, вдвое больше объема кислорода. Он установил, что химически чистая вода не поддается электролизу и что электрический ток только разлагает соединения, но не создает никаких новых соединений. Дэви одним из первых высказал правильные взгляды на то, что электрический ток, полученный от вольтова столба, возникает в результате химических процессов между металлами и электролитом.

В 1807 г. Дэви впервые получил электролитическим путем щелочные элементы калий и натрий, ранее не известные в чистом виде; в 1808 г. им были также получены магний, бор, барий, стронций и кальций. Эти открытия наглядно иллюстрировали практическую ценность электролиза и еще больше усилили интерес ученых к химическим действиям тока.

В

Хемфри Дэви

(1778 – 1829)

1802 – 1807 гг. ряду ученых, в том числе профессору Московского университета П. И. Страхову, удалось установить опытным путем, что земля и вода являются проводниками тока (рис. 1.7). Этим открытием была создана возможность применения земли и воды в качестве обратного (второго) провода при осуществлении установок и устройств для передачи электрического тока от генератора к приемникам.

В 1807 г. профессор Московского университета Ф. Ф. Рейс обнаружил явление, получившее впоследствии название электроосмоса. Явление электроосмоса Рейс обнаружил при следующем опыте (рис. 1.8): в стеклянную U-образную трубку диаметром около 1 см и общей длиной 18 см была залита вода, а самый изгиб трубки заполнялся порошкообразным нерастворимым веществом (тертым камнем или песком), так что между обоими коленами трубки получалась пористая перегородка. В колена трубки вводились платиновые электроды и погружались в воду. После присоединения этих электродов к полюсам вольтова столба около них начинались появляться пузырьки газов в результате разложения воды на кислород и водород. При этом вода начинала сразу подниматься в колене, соединенном с отрицательным полюсом столба, и опускаться в другом колене, проходя под действием тока с

Рис. 1.7. Схема опыта Страхова

Рис. 1.8. Схема опыта Рейса

квозь пористую перегородку. При отключении вольтова столба вода вновь устанавливалась на прежнем уровне. В своих выводах из этих опытов Рейс указывает, что под действием электричества жидкость может переноситься сквозь пористые тела. Явление электрооомоса в современной технике получило практическое применение, в частности при осушке намывных плотин (электродренаж).

Широкое применение вольтовых столбов и других источников электрического тока не могло не усилить интереса к вопросу о том, в результате каких действий в них появляется электрический ток. Все яснее становилось, что химические явления в гальванических элементах являются первичными, а появление тока есть их следствие, т. е. явление вторичное. Контактная теория Вольта становилась малоубедительной, и ей все энергичнее стала противопоставляться химическая теория гальванизма, согласно которой возникновение электричества определяется химическими процессами. Эта теория впервые наиболее четко была разработана Г. Парротом, считавшим, что явления в вольтовом столбе и других гальванических элементах происходят исключительно за счет окисления металлов, т. е. за счет изменения одного из веществ элемента. М. Фарадей также выступал против контактной теории электричества, указывая, что нет такого случая, даже при ударах электрического угря и ската, когда электричество получалось бы без затраты какого-либо другого вида энергии.

1.4. Изучение действия электрического тока на магнитную стрелку. Разработка основ электродинамики

Расширение и углубление исследований электрических явлений привели к открытию и изучению новых свойств электрического тока.

В 1820 г. были опубликованы и продемонстрированы опыты датского физика Эрстеда по наблюдению действия тока на магнитную стрелку, возбудившие большой интерес среди ученых разных стран и получившие в их трудах дальнейшие углубление и развитие.

В этом же 1820 г. Араго было обнаружено новое явление – намагничивание проводника протекающим по нему током. Если медная проволока, соединенная с полюсами вольтова столба, погружалась в железные опилки, то последние равномерно к ней приставали; при выключении тока опилки отставали. Когда Араго брал вместо медной проволоки железную (из мягкого железа), то она временно намагничивалась; кусочек стали при таком намагничивании становился постоянным магнитом. По рекомендации Ампера Араго заменил прямолинейную проволоку проволочной спиралью, при этом намагничивание иголки, помещенной внутри спирали, усиливалось. Так был создан соленоид. Опыты Араго дали первое указание на электрическую природу магнетизма и показали возможность намагничивания стали электрическим током.

В процессе своих исследований Араго обнаружил (в 1824 г.) еще одно новое явление, названное им магнетизмом вращения и заключавшееся в том, что при вращении металлической пластины, находящейся над магнитной стрелкой (или под ней), последняя также приходит во вращение. Однако правильное объяснение этого явления было дано Фарадеем только после открытия явления электромагнитной индукции.

Новым шагом от качественных наблюдений действия тока на магнит к определению количественных зависимостей явилось установление французскими учеными Био и Саваром закона действия тока на магнит. Пользуясь опытным методом, они установили в 1820 г. следующее: «если неограниченной длины провод с проходящим по нему вольтовым током действует на частицу северного или южного магнетизма, находящуюся на известном расстоянии от средины провода, то равнодействующая всех сил, исходящих из провода, направлена перпендикулярно к кратчайшему расстоянию частицы от провода, и общее действие провода на любой – южный или северный – магнитный элемент обратно пропорционально расстоянию последнего до провода».

Французский ученый Лаплас показал впоследствии, что сила действия, создаваемая небольшим участком проводника, изменяется обратно пропорционально квадрату расстояния.

Важное научное и методологическое значение в расширении исследования новых явлений имели труды одного из крупнейших французских ученых – Ампера, заложившие основы электродинамики. Ампером был впервые предложен термин «электрический ток» и введено в науку понятие о направлении электрического тока: он предложил считать за направление тока направление движения положительного электричества.

Наблюдая отклонение магнитной стрелки под влиянием протекающего по проводнику тока, Ампер сумел сформулировать правило, позволяющее определить направление отклонения стрелки в зависимости от направления тока в проводнике. Это правило было в то время широко известно под названием «правила пловца» и формулировалось оно следующим образом: «Если мысленно расположиться человеку так, чтобы ток проходил по направлению от ног наблюдателя к голове и чтобы лицо его было обращено к магнитной стрелке, то под влиянием тока северный полюс магнитной стрелки всегда будет отклоняться влево».

О



Скачать документ

Похожие документы:

  1. Междисциплинарный научно-практический сборник

    Документ
    Современный мир столкнулся с системным кризисом цивилизации. Если раньше мы могли прогнозировать и планировать развитие общественных институтов, экономики, то сейчас общество ежедневно оказывается лицом к лицу с непредвиденными ситуациями.
  2. Развитие региональной системы внешней оценки качества общего образования 13. 00. 01. общая педагогика, история педагогики и образования

    Автореферат диссертации
    Защита состоится 29 марта 2012 г. в 9.00 часов на заседании диссертационного совета Д 212.022.02 по защите докторских и кандидатских диссертаций при Бурятском государственном университете по адресу: 67 ,
  3. Проблемы образования XXI века как предмет междисциплинарных научных исследований (По материалам VII межвузовской студенческой олимпиады) номинация «социальная работа» Орел – 2010

    Документ
    Проблемы образования века как предмет междисциплинарных научных исследований: сб. социальных проектов VII Межвузовской олимпиады 8-9 апреля 2010 г. – Орел: Орловский государственный университет, 2010.
  4. Проблемы и перспективы развития исторической информатики

    Анализ
    Анализ историографии последних лет показывает повышение интереса к теоретическим проблемам исторической информатики: осмыслению закономерностей и этапов ее развития, взаимодействия с другими областями научного знания, перспектив на будущее.
  5. Тема История экономических учений как наука. 2

    Документ
    Предмет истории экономических учений – процесс возникновения, развития и смены теоретических идей и взглядов отдельных экономистов, школ и направлений экономической мысли в различные эпохи и в различных странах в тесной связи с историей

Другие похожие документы..