Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Книга'
Наша книга посвящена истории Академической гимназии Санкт-Петербургского Университета, более известной по прежнему названию - школа-интернат №45 при ...полностью>>
'Образовательный стандарт'
Нормативный срок освоения основной образовательной программы подготовки специалиста по защите информации по специальности 075600 - “Информационная бе...полностью>>
'Документ'
Я думаю, что главное в этой книге состоит в попытке психологически осмыслить категории, наиболее важные для построения целостной системы психологии к...полностью>>
'Документ'
Затвердити Положення про центр, будинок, клуб, бюро туризму, краєзнавства, спорту та екскурсій учнівської молоді, туристсько-краєзнавчої творчості уч...полностью>>

Высшее профессиональное образование т. Я. Дубнищева концепции современного естествознания

Главная > Документ
Сохрани ссылку в одной из сетей:

11

В религии аналогом доказательности для утверждения этических норм является авторитет постулированного высшего существа, абсолютного духа. Ее вечные истины тем самым опираются тоже на интуитивные суждения. Множество примеров из области искусства показывают его способность нести достоверность в самом себе через свои «сверхзадачи», убеждающие удовольствием, правдоподобием, своими многообразными частными функциями. И эти многообразные функции притягательны для потребителя искусства, они дают наслаждение, чувство гармонии, убеждают в правильности той или иной позиции. При выборе решения, модели или суждения, как видно из истории открытий в науке, эти функции искусства очень важны и являются условием выживания человечества. И чем больше логические функции психики передаются машине, тем ярче выступает внелогическая функция интеллекта. И в научном творчестве естественника все более проявляются черты, свойственные художественному творчеству и научной работе гуманитария.

Сейчас на границе между «двумя культурами» возникло много новых дисциплин. Так, филология разветвилась на лингвистику, поэтику, литературоведение, фольклористику; появились психофизиология и математическая лингвистика. Проникают внелогические элементы в кибернетику. Переход к системному анализу, диалоговым ЭВМ означает включение элементов, которые не связаны с числом, не формализуются. Это — и синтетическая оценка ситуации, и неформализуемый отбор существенных факторов в отличие от несущественных и т.д. И не случайно ЭВМ требуют создания рабочих коллективов, где математики работают вместе с лингвистами и психологами. Стремительно возрастающая роль интеллектуальной деятельности, которая может быть передана машине и которую машина способна выполнить быстрее, подвергает формализации не только мыслительную способность человека, но и внелогические компоненты мышления. И это составляет сущность новой «интеллектуальной революции», называемой так по аналогии с «промышленной революцией» XVIII—XXI вв. Ныне не только простые вычисления, но и испытание, и количественная проверка моделей могут быть передоверены машине. Тем самым поиски новых моделей, принимаемых в науке и искусстве с учетом интуиции, остаются человеку и, составляя основу творческой деятельности интеллекта, создают почву для взаимопонимания и сближения «двух культур».

Современный уровень развития естествознания, обретение им глубоких взаимосвязей с другими науками, прямое и опосредованное влияние на развитие производительных сил включают его в решение общесоциальных задач. Наряду с материальным эффектом, новациями от применения достижений естественных и математических наук и способом рационализации, выходящим за пределы естествознания и техники, возникают новые нравствен-

12

ные ценности — образцы объективности, добросовестности, честности, реализуемые в труде. Эта крепнущая связь и взаимодействие науки, техники и общества превратили науку в движущую силу общества. Наука все более ориентируется на человека, на развитие его интеллекта, творческих способностей, культуры мышления, на создание материальных и духовных предпосылок его целостного развития.

В настоящее время складывается и особая дисциплина, называемая этикой науки, которая была впервые сформулирована английским ученым Г. Спенсером. Нравственность, по его мнению, есть форма развития эволюции живой природы, определенной фазой которой является человеческое общество. Сторонники этого представления о нравственности развивают концепцию эволюционного гуманизма. Дж.Хаксли, К.Уодингтон, П.Тейяр де Шарден, русские мыслители-космисты — Н.Ф.Федоров, В.И.Вернадский, А.Л.Чижевский пытались найти объективные (естественно-научные) основания морали. Эти проблемы широко обсуждаются в обществе и особенно в таких науках, как социобиология, генетика, этология.

Цикличность исторических процессов на основе обобщения за 2500 лет исторических событий исследовал А.Л.Чижевский, динамику процессов в природе и циклический характер перехода биосферы в ноосферу — В.И.Вернадский, социокультурный аспект циклов — П.А.Сорокин. За последние 25 лет сильно вырос интерес к идеям космистов (особенно после кризисов середины семидесятых годов XX в. и последующих перестроек в структуре общества). Русский циклизм явился продолжением идей космизма. Основы общей теории кризисов как неизбежной стадии в циклической динамике систем в природе и обществе заложил А. А. Богданов. Широко известно учение Н. Д. Кондратьева о больших циклах конъюнктуры, которое было распространено Й. Шумпетером и явилось основой для исследований долгосрочных циклов в экономике и общественной жизни. Появился ряд монографий, проводятся междисциплинарные дискуссии по проблемам теории циклов и кризисов, социогенетике и прогнозированию. Внутри самого естествознания укрепляются представления о необходимости соответствия научных концепций гармонии и красоте. Концепция устойчивого развития направлена на соотнесение и гармонизацию в единстве экологических, социальных и технологических программ развития. Она названа академиком Н.Н.Моисеевым стратегией выживания человечества.

1.2. Формирование критерия научности

Наука — исторически сложившаяся система познания объективных законов мира. Она нацелена на получение и систематиза-

13

цию объективных знаний о действительности, на объяснение и предсказание явлений и процессов на основе открываемых ею законов. Научное познание помимо описания выявляет причины явлений, пытаясь объяснить происходящее. Для него существенным было формирование критерия истинности и разграничение наук по предметам и методам исследования мира. Гармония и соразмерность, как и в жизни, важны в научных теориях. С Фале-сом связывают первую постановку вопроса о первоначале всего и первые математические доказательства. Эти два достижения ориентировали развитие научного метода познания.

Пифагор видел гармонию в «математическом узоре», который лежит в основе совокупности всех явлений природы. Его идеи прослеживаются у Филолая, Гераклита, Евклида, Архимеда, Платона, Аристотеля. «Начала» Евклида заложили основы геометрии, все положения которой были обоснованы и взаимосвязаны. Евклид и Архимед выделяли математические закономерности, причем они интересовали их сами по себе.

Система доказательности и обоснованности знания стала складываться в математике еще в античные времена, в диалогах Платона арифметика есть чистое знание и центр всего космоса знаний. Впоследствии стало ясно, что математические закономерности отражают глубинную сущность законов природы, а не только внешнюю их сторону. Об этом писали Леонардо да Винчи, Р. Декарт, И.Кеплер, Г.Галилей, Х.Гюйгенс, И.Ньютон и другие. Структура наук формировалась постепенно.

У Платона «тот, кто не умеет правильно считать, никогда не станет мудрым», наука о числе — высшая мудрость, «все искусства совершенно исчезли бы, если бы было исключено искусство арифметики» («Послезаконие»). Арифметика — наука, ведущая к размышлению и познанию чистого бытия, искусство счета (логистика) отделено от абстрактной арифметики («Государство»). За ней в структуре знаний следуют геометрия, которая также «влечет к истине и воздействует на философскую мысль, стремя ее ввысь», стереометрия, «касающаяся измерений кубов и всего того, что имеет глубину», астрономия, изучающая «вращение тел»; завершает ряд математических наук учение о гармонии. Если астрономия — умозрительное изучение числовых соотношений в движении небесных светил, то гармония — умозрительное изучение числовых соотношений в музыкальных созвучиях. Это позволяет человеку «посредством только одного разума, минуя ощущения, устремляться к сущности любого предмета и не отступать, пока при помощи самого мышления не достигнет сущности блага. И он оказывается на самой вершине умопостигаемого». Это восхождение души есть освобождение от оков, поворот от теней к образу и свету, подъем из подземелья к Солнцу. Знание делится на практическое и познавательное, а последнее — на повелевающее и искусство суждения. А арифме-

14

тика может применяться для измерения поверхностей, глубин и скоростей.

У Аристотеля «Первая философия» — это учение о боге как неподвижном перводвигателе, бестелесной чистой форме. Далее следуют физические науки, так как их предметом является сущность, имеющая в себе начало движения и покоя. Математика не исследует бытие в движении и потому уступает физике, хотя более доказательна, абстрактна и истинна. В сочинении «О небе» Аристотель широко использует числовые соотношения. Арифметика выше геометрии, так как основана на меньшем числе начал. Все остальные представления о мире еще формировались путем догадок, рассуждений, наблюдений и сопоставлений. Оптику, гармонику и астрономию Аристотель причисляет к наиболее физическим, так как «они в известном отношении обратны геометрии. Ибо геометрия рассматривает физическую линию не как материалистическую, так как она не существует физически, а оптика — математическую линию как физическую» («Физика»). Его воззрения основаны на наблюдениях и соответствии здравому смыслу, поэтому больше относятся к натурфилософии, чем к физике.

Проблема несоизмеримости диагонали квадрата с его стороной, воспринимаемая пифагорейцами как «козни злых сил», привела Евдокса к разработке теории пропорций и приложению ее к геометрии. Он стал беспредельно уменьшать остатки, строя доказательства путем исчерпывания. Так появились иррациональные числа, что заставило задуматься над основаниями математики и доказательствами. Аксиомы Евдокса вошли в «Начала» Евклида и работы Архимеда, продвинули логику Аристотеля и других учеников Платона; возросла роль чертежа и доказательств «от противного». И это была попытка единого толкования окружающей природы — натурфилософия, и, по современным воззрениям, она не была еще наукой. Постепенно сведения о явлениях становились более конкретными, описание природы вытеснялось экспериментальным изучением ее законов, выделились разные предметы познания и соответствующие им исходные понятия и методы.

Физика изучает наиболее простые и общие свойства материального мира. Ее законы являются обобщением многих специально поставленных опытов, они справедливы на Земле и в Космосе, отражая материальное единство мира. Возрождение Галилеем математического метода Архимеда означает переход к науке Нового времени, с XVII в. наступил период аналитического естествознания; природе стали задавать вопросы и пытались ответить на них с помощью специальных опытов, а полученные результаты записывались, обобщались и анализировались с помощью математики. Стройные естественно-научные теории сначала были созданы в механике, а затем в других областях физики. И экспери-

15

ментально-математическое естествознание надолго определило идеал и критерии научности. В физике переход к доказательности и обоснованности знания произошел в XVII в., в химии — в XVIII в., в биологии — в XIX в. и т.д.

Естествознание исследует органическую и неорганическую природу на Земле и во Вселенной. Сфера исследования включает объекты микро-, макро- и мегамиров. Специфика естествознания в том, что знание отличается высокой степенью объективности, постоянно совершенствуется и представляет собой наиболее достоверную часть всего знания человечества. Были открыты фундаментальные законы, объяснившие множество фактов и явлений; на основе этих законов были сформулированы принципы, которые составили фундаментальные теории различных дисциплин. Но менялось и отношение человека к процессу исследования природы, формировалась стратегия познания. Человек в XVII в. отделял себя от изучаемой природы, выделял повторяющиеся явления и объяснял их на основе наглядных представлений и однозначного соответствия результата действия причине, вызвавшей его {принцип детерминизма). Большое значение для формирования так называемой классической науки сыграли успехи метода Галилея — Ньютона, позволившего с большой точностью дать проверяемые предсказания. В арсенале знания к концу XIX в. были значительные достижения: в физике, кроме классической механики, — оптика, термодинамика, законы электричества и магнетизма и др.; в математике — аналитическая геометрия и математический анализ; в химии — учение о составе веществ, изучение основных свойств химических соединений, Периодическая система элементов, структурная химия и др.; в биологии — классификация и изучение основных свойств живых существ, теория клеточного строения, эволюционная теория Ч.Дарвина и др. Складывалось впечатление, что стройное здание науки близко к завершению, остаются некоторые «детали». Была уверенность в познаваемости мира «до конца», т.е. все расхождения теории с опытом могут быть преодолены уточнением либо эксперимента, либо теории. Наблюдатель находился вне исследуемых явлений, выводы соответствовали классической, булевой логике («или — или»). Методология классической науки предполагала мысленную операцию отстранения исследователя от исследуемой природы.

К началу XX в. в физике произошли изменения, кардинально расширившие представления о естественно-научной рациональности. Выяснилось, что операция устранения субъекта осуществима далеко не всегда и не для всех объектов познания. Квантовая гипотеза излучения, квантовая теория атома, теория броуновского движения изменили представления о воспроизводимости результатов исследования, роли измерительных приборов (и наблюдателя), случайности в исследовании природы. Сформировалась не-

16

классическая стратегия познания, в основе которой лежит признание случайности в качестве фундаментального свойства природы, а все выводы опираются на логику «дополнительности» («и — и») и уходят от привычного, наглядного. Принципиально дискретный взгляд на мир из области физики микромира постепенно распространился на другие области науки (и не только естествознания), а включенность наблюдателя (или прибора) в систему не нарушила объективности получаемого знания. Родился новый взгляд на мир в целом, и естествознание обогатило культуру человечества и самого человека.

В настоящее время наука переходит к новой стратегии познания, в так называемый постнеклассический период. Интегративный характер постнеклассической науки проявляется в создании общенаучных дисциплин и методов, появлении таких дисциплин, как теория систем, синергетика, системный и структурный подходы и т.д. Обнаружение принципиальной хаотичности и неопределенности ряда процессов и состояний привело к тому, что все большую роль, помимо динамических закономерностей, стали играть вероятностно-статистические законы. Формируются общенаучные методы, среди которых методу моделирования принадлежит особая роль.

Современная наука — целостный динамически организованный и саморазвивающийся организм. Она насчитывает около 15 тыс. научных дисциплин, число ученых превосходит 5 млн человек, а научная информация удваивается каждые 10—15 лет. С развитием методов исследования конкретных естественно-научных дисциплин фундаментальные науки — физика, химия, астрономия, биология — сформировались к середине XX в., стали «обрастать» смежными дисциплинами. Появились биохимия, геофизика, химическая физика, физическая химия, астрофизика, молекулярная биология, геохимия, астробиология, астронавтика и др.

Система наук многообразна и сложна. К общественным относят такие науки, как историю, археологию, экономику, статистику, демографию, историю государства и права, этнографию и др.; к естественным — конкретные научные дисциплины: механику, астрономию, физику, химию, геологию, географию, биологию, а также биохимию, биофизику, астрофизику, космологию, химическую физику, физическую химию, ботанику, зоологию, антропологию, генетику и др. Все активнее развиваются технические науки, нацеленные не на познание, а на преобразование мира. Появились теоретические прикладные науки: физика металлов, физика полупроводников, катализ, аэро- и гидродинамика, а также практические прикладные науки: металловедение, астронавтика, электроника, полупроводниковая и лазерная технология и др. Прикладные науки нацелены на разработку способов применения знаний, полученных в фундаментальных науках, для удов-

17

летворения жизни общества. Более 90 % всех важнейших достижений научно-технического уровня сделаны в XX в.

В средневековье политическая и духовная власть принадлежала религии, что сказалось на понимании истины: наука должна была объяснять и доказывать теологические положения. В эпоху Возрождения произошел резкий скачок в развитии культуры. «Коперниканская революция» ознаменовала начало современной науки. В ее основе — признание материального единства мира, единства законов на небе и на Земле. Это означало отказ от представлений Аристотеля, канонизированных Ватиканом, и возможность изучать явления на Земле, чтобы сделанные из опытов выводы и закономерности были справедливы вне лаборатории (даже в Космосе). Галилей начал ставить специальные опыты и обрабатывать их результаты математически — так в науку вошел эксперимент и математически сформулированный закон, создавалась современная научная методология. Математик и философ М. Клайн заключил: «Все, что планируется на основе развитой Ньютоном математической теории, действует безотказно. Сбои, если таковые случаются, обусловлены лишь несовершенством созданных человеком механизмов».

1.3. Методы естествознания, всеобщность его законов. Системный подход

Природа есть сложная система, сложный организм, где все связано со всем. По выражению современного философа К. Яспер-са, «существуют отдельные науки, а не наука вообще как наука о действительном, однако каждая из них входит в мир беспредельный, но все-таки единый в калейдоскопе связей». Аналитический метод и выделение какой-то стороны предмета или явления — наиболее критикуемые стороны научного метода познания. Наука с самого начала стала отвлекаться от вопросов «почему?» и вопросов общего характера, занявшись исследованием «как все происходит?». Путь аналитического естествознания, заданный Ньютоном, превратил общие соображения в четко поставленную математическую задачу, и ученый, не вдаваясь в выяснение физической природы тяготения, решил ее разработанным им же математическим методом.

И. Ньютон пишет: «Причину же этих свойств силы тяжести я до сих пор не мог вывести из явлений, гипотез же я не измышляю... Довольно того, что тяготение на самом деле существует и действует согласно изложенным выше законам и вполне достаточно для объяснения всех движений небесных тел и моря...». На склоне лет он сказал своему племяннику: «Не знаю, кем я кажусь миру, но самого себя я вижу всего лишь мальчиком, играющим на берегу океана, который забавляется, выбирая

18

то обкатанный камешек, то красивую раковину, в то время как необъятный океан истины простирается передо мною, уходя в неведомые дали».

Научный метод независимо от конкретных приемов и способов исследования в разных научных дисциплинах отражает единство всех форм знаний об окружающем мире. Исторически сложились общие требования к последовательности действий в труде; с появлением потребности получения знаний возникла потребность в анализе и оценке разных методов — методология. Можно сказать, что конкретные научные методы отражают тактику исследований, а общенаучные — стратегию.

Теории — основная форма научного знания. Их разделяют на описательные, научные и дедуктивные. С содержательной стороны они состоят из эмпирического базиса и логического аппарата теории, а с формальной — это совокупность допущений, аксиом, постулатов, общих законов.

В описательных теориях, выделив группу явлений или объектов, формулируют общие закономерности на основе эмпирических данных. Эти теории носят качественный характер, так как не проводится логический анализ и корректность доказательств. Таковы первые теории в области электричества и магнетизма, физиологическая теория И.Павлова, эволюционная теория Ч.Дарвина, современные психологические теории и т.п. В научных теориях конструируют идеальный объект, замещающий реальный. Обычно они основаны на нескольких аксиомах, принимаемых без доказательств, из которых логически выводятся остальные положения. Часто к основным аксиомам добавляют гипотезы. Следствия теории проверяются экспериментом. Таковы физические теории, использующие логику и достаточно строгий математический аппарат. Третий тип — дедуктивные теории. Первая из них — «Начала» Евклида (сформулирована основная аксиома, потом к ней добавлены положения, логически выведенные из нее, и все доказательства проводятся на этой основе). В таких теориях разработан специальный формализованный язык, все термины которого подвергаются интерпретации.

Понятия и термины теории формируются в процессах абстрагирования и идеализации, используемых во всех теориях. Понятия отражают существенную сторону явлений, появляющуюся при обобщении исследования. При этом из целого объекта или явления выделяется только некоторая сторона его, понятие может быть сформировано на основе опыта или теории. Так, понятию «температура» может быть дано операционное определение (показатель степени нагретости тела в определенной шкале термометра), а с позиций молекулярно-кинетической теории температура — это величина, пропорциональная средней кинетической энергии движения частиц, составляющих тело.

19

При абстрагировании игнорируют свойства объекта, которые считают несущественными. Таковы модели точки, прямой линии, окружности, плоскости, материальной точки и т.д. Реальные объекты в каких-то задачах могут быть заменены этими абстракциями. Землю при движении вокруг Солнца можно считать материальной точкой, но нельзя — при движении по ее поверхности.

При идеализации выделяют какое-то свойство или отношение, и возникающий в результате идеальный объект обладает только этим свойством или отношением. Наука выделяет в реальной действительности общие закономерности, которые существенны и повторяются в различных предметах, поэтому приходится идти на отвлечения от реальных объектов. Таковы популярные модели «абсолютно черного тела», «идеального газа», «сплошной среды» и т. д.

Но при применении теории необходимо вновь сопоставить полученные и использованные идеальные и абстрактные модели с реальностью, т.е. исключить абстракции. Поэтому важны выбор абстракций в соответствии с их адекватностью данной теории и последующее исключение их.

Наблюдения еще не связаны с какой-либо теорией, но формулировка вопросов вызвана какой-то проблемной ситуацией. Наблюдение предполагает наличие определенной программы исследования, какой-то пробной гипотезы, подвергаемой анализу и проверке. На наблюдениях и аналогиях строилась натурфилософия. Наблюдения и ныне — начальный источник информации, целенаправленный процесс восприятия предметов или явлений. Они используются там, где нельзя поставить прямой эксперимент, например в вулканологии или космологии. Каждая наука использует свои методы познания мира в зависимости от характера решаемых задач. Сначала на опытной стадии за систематическими наблюдениями следует специально поставленный эксперимент, в котором производятся измерения. Сравнение и измерение — частные случаи наблюдения.

Как метод научного познания анализ — одна из начальных стадий исследования, когда от цельного описания объекта переходят к его строению, составу, признакам и свойствам; он основан на мысленном или реальном расчленении предмета на части. Синтез заключается в соединении различных элементов предмета в единое целое и обобщении выделенных и изученных особенностей объекта; результаты синтеза входят в теорию объекта, определяющую пути дальнейших исследований. Индукция состоит в формулировании логического умозаключения на основе обобщений данных эксперимента и наблюдений. Эти обобщения рассматриваются как эмпирические законы. Логические рассуждения идут от частного к общему, обеспечивая лучшее осмысление и переход на более общий уровень рассмотрения проблемы.



Скачать документ

Похожие документы:

  1. С. Г. Хорошавина концепции современного естествознания курс лекций (1)

    Курс лекций
    Предлагаемый курс способствует расширению представлений о едином процессе развития, охватывающем живую природу, неживое вещество и общество. Программа курса позволяет вооружить слушателей знаниями, отвечающими современному уровню
  2. С. Г. Хорошавина концепции современного естествознания курс лекций (2)

    Курс лекций
    Предлагаемый курс способствует расширению представлений о едином процессе развития, охватывающем живую природу, неживое вещество и общество. Программа курса позволяет вооружить слушателей знаниями, отвечающими современному уровню
  3. Учебно-методический комплекс по дисциплине ен. Ф. 04 Концепции современного естествознания индекс по гос/наименование дисциплины (2)

    Учебно-методический комплекс
    (Требования государственного образовательного стандарта высшего профессионального образования по специальности 010200 – Прикладная математика и информатика (третий уровень высшего профессионального образования) к содержанию данной
  4. Учебно-методический комплекс по дисциплине ен. Ф. 04 Концепции современного естествознания индекс по гос/наименование дисциплины (1)

    Учебно-методический комплекс
    Естественнонаучная и гуманитарная культуры; научный метод; история естествознания; панорама современного естествознания; тенденции развития; корпускулярная и континуальная концепции описания природы; порядок и беспорядок в природе; хаос; структурные
  5. Программа дисциплины Концепции современного естествознания Специальность/направление подготовки цикл гсэ (1)

    Программа дисциплины
    Подготовка студентов по курсу Концепции современного естествознания в соответствии с требованиями «Государственного образовательного стандарта ВПО 080507 – Менеджмент организации».

Другие похожие документы..