Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Объявившийся в Находке 25 сентября правительственный эскорт промчался в порт Восточный, минуя Приморское морское пароходство, где изначально предполаг...полностью>>
'Документ'
Ваша компания представлена на рынке чулочно-носочных изделий, который принято считать одним из самых перспективных среди товаров легкой промышленност...полностью>>
'Документ'
22 червня 2011 року Український народ спільно з народами – побратимами та світовим співтовариством буде відзначати найтрагічнішу дату в історії людст...полностью>>
'Инструктивно-методическое письмо'
Школьное химическое образование за последние десять лет претерпело значительные изменения: основным регламентирующим документом, определяющим уровень...полностью>>

Лекция: Сети и сетевые операционные системы

Главная > Лекция #
Сохрани ссылку в одной из сетей:

Лекция: Сети и сетевые операционные системы

В лекции рассматриваются особенности взаимодействия процессов, выполняющихся на разных операционных системах, и вытекающие из этих особенностей функции сетевых частей операционных систем.

До сих пор в лекциях данного курса мы ограничивались рамками классических операционных систем, т. е. операционных систем, функционирующих на автономных однопроцессорных вычислительных машинах, которые к середине 80-х годов прошлого века составляли основу мирового парка вычислительной техники. Подчиняясь критериям повышения эффективности и удобства использования, вычислительные системы с этого времени, о чем мы уже упоминали в самой первой лекции, начинают бурно развиваться в двух направлениях: создание многопроцессорных компьютеров и объединение автономных систем в вычислительные сети.

Появление многопроцессорных компьютеров не оказывает существенного влияния на работу операционных систем. В многопроцессорной вычислительной системе изменяется содержание состояния исполнение. В этом состоянии может находиться не один процесс, а несколько – по числу процессоров. Соответственно изменяются и алгоритмы планирования. Наличие нескольких исполняющихся процессов требует более аккуратной реализации взаимоисключений при работе ядра. Но все эти изменения не являются изменениями идеологическими, не носят принципиального характера. Принципиальные изменения в многопроцессорных вычислительных комплексах затрагивают алгоритмический уровень, требуя разработки алгоритмов распараллеливания решения задач. Поскольку с точки зрения нашего курса многопроцессорные системы не внесли в развитие операционных систем что-либо принципиально новое, мы их рассматривать далее не будем.

По-другому обстоит дело с вычислительными сетями.

Для чего компьютеры объединяют в сети

Для чего вообще потребовалось объединять компьютеры в сети? Что привело к появлению сетей?

  • Одной из главных причин стала необходимость совместного использования ресурсов (как физических, так и информационных). Если в организации имеется несколько компьютеров и эпизодически возникает потребность в печати какого-нибудь текста, то не имеет смысла покупать принтер для каждого компьютера. Гораздо выгоднее иметь один сетевой принтер для всех вычислительных машин. Аналогичная ситуация может возникать и с файлами данных. Зачем держать одинаковые файлы данных на всех компьютерах, поддерживая их когерентность, если можно хранить файл на одной машине, обеспечив к нему сетевой доступ со всех остальных?

  • Второй причиной следует считать возможность ускорения вычислений. Здесь сетевые объединения машин успешно конкурируют с многопроцессорными вычислительными комплексами. Многопроцессорные системы, не затрагивая по существу строение операционных систем, требуют достаточно серьезных изменений на уровне hardware, что очень сильно повышает их стоимость. Во многих случаях можно добиться требуемой скорости вычислений параллельного алгоритма, используя не несколько процессоров внутри одного вычислительного комплекса, а несколько отдельных компьютеров, объединенных в сеть. Такие сетевые вычислительные кластеры часто имеют преимущество перед многопроцессорными комплексами в соотношении эффективность/стоимость.

  • Следующая причина связана с повышением надежности работы вычислительной техники. В системах, где отказ может вызвать катастрофические последствия (атомная энергетика, космонавтика, авиация и т. д.), несколько вычислительных комплексов устанавливаются в связи, дублируя друг друга. При выходе из строя основного комплекса его работу немедленно продолжает дублирующий.

  • Наконец, последней по времени появления причиной (но для многих основной по важности) стала возможность применения вычислительных сетей для общения пользователей. Электронные письма практически заменили письма обычные, а использование вычислительной техники для организации электронных или телефонных разговоров уверенно вытесняет обычную телефонную связь.

Сетевые и распределенные операционные системы

В первой лекции мы говорили, что существует два основных подхода к организации операционных систем для вычислительных комплексов, связанных в сеть, – это сетевые и распределенные операционные системы. Необходимо отметить, что терминология в этой области еще не устоялась. В одних работах все операционные системы, обеспечивающие функционирование компьютеров в сети, называются распределенными, а в других, наоборот, сетевыми. Мы придерживаемся той точки зрения, что сетевые и распределенные системы являются принципиально различными.

В сетевых операционных системах для того, чтобы задействовать ресурсы другого сетевого компьютера, пользователи должны знать о его наличии и уметь это сделать. Каждая машина в сети работает под управлением своей локальной операционной системы, отличающейся от операционной системы автономного компьютера наличием дополнительных сетевых средств (программной поддержкой для сетевых интерфейсных устройств и доступа к удаленным ресурсам), но эти дополнения существенно не меняют структуру операционной системы.

Распределенная система, напротив, внешне выглядит как обычная автономная система. Пользователь не знает и не должен знать, где его файлы хранятся, на локальной или удаленной машине, и где его программы выполняются. Он может вообще не знать, подключен ли его компьютер к сети. Внутреннее строение распределенной операционной системы имеет существенные отличия от автономных систем.

Изучение строения распределенных операционных систем не входит в задачи нашего курса. Этому вопросу посвящены другие учебные курсы – Advanced operating systems, как называют их в англоязычных странах, или "Современные операционные системы", как принято называть их в России.

В этой лекции мы затронем вопросы, связанные с сетевыми операционными системами, а именно – какие изменения необходимо внести в классическую операционную систему для объединения компьютеров в сеть.

Взаимодействие удаленных процессов как основа работы вычислительных сетей

Все перечисленные выше цели объединения компьютеров в вычислительные сети не могут быть достигнуты без организации взаимодействия процессов на различных вычислительных системах. Будь то доступ к разделяемым ресурсам или общение пользователей через сеть – в основе всего этого лежит взаимодействие удаленных процессов, т. е. процессов, которые находятся под управлением физически разных операционных систем. Поэтому мы в своей работе сосредоточимся именно на вопросах кооперации таких процессов, в первую очередь выделив ее отличия от кооперации процессов в одной автономной вычислительной системе (кооперации локальных процессов), о которой мы говорили в лекциях 4, 5 и 6.

  1. Изучая взаимодействие локальных процессов, мы разделили средства обмена информацией по объему передаваемых между ними данных и возможности влияния на поведение другого процесса на три категории: сигнальные, канальные и разделяемая память. На самом деле во всей этой систематизации присутствовала некоторая доля лукавства. Мы фактически классифицировали средства связи по виду интерфейса обращения к ним, в то время как реальной физической основой для всех средств связи в том или ином виде являлось разделение памяти. Семафоры представляют собой просто целочисленные переменные, лежащие в разделяемой памяти, к которым посредством системных вызовов, определяющих состав и содержание допустимых операций над ними, могут обращаться различные процессы. Очереди сообщений и pip'ы базируются на буферах ядра операционной системы, которые опять-таки с помощью системных вызовов доступны различным процессам. Иного способа реально передать информацию от процесса к процессу в автономной вычислительной системе просто не существует. Взаимодействие удаленных процессов принципиально отличается от ранее рассмотренных случаев. Общей памяти у различных компьютеров физически нет. Удаленные процессы могут обмениваться информацией, только передавая друг другу пакеты данных определенного формата (в виде последовательностей электрических или электромагнитных сигналов, включая световые) через некоторый физический канал связи или несколько таких каналов, соединяющих компьютеры. Поэтому в основе всех средств взаимодействия удаленных процессов лежит передача структурированных пакетов информации или сообщений.

  2. При взаимодействии локальных процессов и процесс–отправитель информации, и процесс-получатель функционируют под управлением одной и той же операционной системы. Эта же операционная система поддерживает и функционирование промежуточных накопителей данных при использовании непрямой адресации. Для организации взаимодействия процессы пользуются одними и теми же системными вызовами, присущими данной операционной системе, с одинаковыми интерфейсами. Более того, в автономной операционной системе передача информации от одного процесса к другому, независимо от используемого способа адресации, как правило (за исключением микроядерных операционных систем), происходит напрямую – без участия других процессов-посредников. Но даже и при наличии процессов-посредников все участники передачи информации находятся под управлением одной и той же операционной системы. При организации сети, конечно, можно обеспечить прямую связь между всеми вычислительными комплексами, соединив каждый из них со всеми остальными посредством прямых физических линий связи или подключив все комплексы к общей шине (по примеру шин данных и адреса в компьютере). Однако такая сетевая топология не всегда возможна по ряду физических и финансовых причин. Поэтому во многих случаях информация между удаленными процессами в сети передается не напрямую, а через ряд процессов-посредников, "обитающих" на вычислительных комплексах, не являющихся компьютерами отправителя и получателя и работающих под управлением собственных операционных систем. Однако и при отсутствии процессов-посредников удаленные процесс-отправитель и процесс-получатель функционируют под управлением различных операционных систем, часто имеющих принципиально разное строение.

  3. Вопросы надежности средств связи и способы ее реализации, рассмотренные нами в лекции 4, носили для случая локальных процессов скорее теоретический характер. Мы выяснили, что физической основой "общения" процессов на автономной вычислительной машине является разделяемая память. Поэтому для локальных процессов надежность передачи информации определяется надежностью ее передачи по шине данных и хранения в памяти машины, а также корректностью работы операционной системы. Для хороших вычислительных комплексов и операционных систем мы могли забыть про возможную ненадежность средств связи. Для удаленных процессов вопросы, связанные с надежностью передачи данных, становятся куда более значимыми. Протяженные сетевые линии связи подвержены разнообразным физическим воздействиям, приводящим к искажению передаваемых по ним физических сигналов (помехи в эфире) или к полному отказу линий (мыши съели кабель). Даже при отсутствии внешних помех передаваемый сигнал затухает по мере удаления от точки отправления, приближаясь по интенсивности к внутренним шумам линий связи. Промежуточные вычислительные комплексы сети, участвующие в доставке информации, не застрахованы от повреждений или внезапной перезагрузки операционной системы. Поэтому вычислительные сети должны организовываться исходя из предпосылок ненадежности доставки физических пакетов информации.

  4. При организации взаимодействия локальных процессов каждый процесс (в случае прямой адресации) и каждый промежуточный объект для накопления данных (в случае непрямой адресации) должны были иметь уникальные идентификаторы – адреса – в рамках одной операционной системы. При организации взаимодействия удаленных процессов участники этого взаимодействия должны иметь уникальные адреса уже в рамках всей сети.

  5. Физическая линия связи, соединяющая несколько вычислительных комплексов, является разделяемым ресурсом для всех процессов комплексов, которые хотят ее использовать. Если два процесса попытаются одновременно передать пакеты информации по одной и той же линии, то в результате интерференции физических сигналов, представляющих эти пакеты, произойдет взаимное искажение передаваемых данных. Для того чтобы избежать возникновения такой ситуации (race condition!) и обеспечить эффективную совместную работу вычислительных систем, должны выполняться условия взаимоисключения, прогресса и ограниченного ожидания при использовании общей линии связи, но уже не на уровне отдельных процессов операционных систем, а на уровне различных вычислительных комплексов в целом.

Давайте теперь, абстрагировавшись от физического уровня организации связи и не обращая внимания на то, какие именно физические средства – оптическое волокно, коаксиальный кабель, спутниковая связь и т. д. – лежат в основе объединения компьютеров в сеть, обсудим влияние перечисленных отличий на логические принципы организации взаимодействия удаленных процессов.

Основные вопросы логической организации передачи информации между удаленными процессами

К числу наиболее фундаментальных вопросов, связанных с логической организацией взаимодействия удаленных процессов, можно отнести следующие:

  1. Как нужно соединять между собой различные вычислительные системы физическими линиями связи для организации взаимодействия удаленных процессов? Какими критериями при этом следует пользоваться?

  2. Как избежать возникновения race condition при передаче информации различными вычислительными системами после их подключения к общей линии связи? Какие алгоритмы могут при этом применяться?

  3. Какие виды интерфейсов могут быть предоставлены пользователю операционными системами для передачи информации по сети? Какие существуют модели взаимодействия удаленных процессов? Как процессы, работающие под управлением различных по своему строению операционных систем, могут общаться друг с другом?

  4. Какие существуют подходы к организации адресации удаленных процессов? Насколько они эффективны?

  5. Как организуется доставка информации от компьютера-отправителя к компьютеру-получателю через компьютеры-посредники? Как выбирается маршрут для передачи данных в случае разветвленной сетевой структуры, когда существует не один вариант следования пакетов данных через компьютеры-посредники?

Разумеется, степень важности этих вопросов во многом зависит от того, с какой точки зрения мы рассматриваем взаимодействие удаленных процессов. Системного программиста, в первую очередь, интересуют интерфейсы, предоставляемые операционными системами. Сетевого администратора больше будут занимать вопросы адресации процессов и выбора маршрута доставки данных. Проектировщика сетей в организации – способы соединения компьютеров и обеспечения корректного использования разделяемых сетевых ресурсов. Мы изучаем особенности строения и функционирования частей операционных систем, ответственных за взаимодействие удаленных процессов, а поэтому рассматриваемый перечень вопросов существенно сокращается.

Выбор способа соединения участников сетевого взаимодействия физическими линиями связи (количество и тип прокладываемых коммуникаций, какие именно устройства и как они будут соединять,т. е. топология сети) определяется проектировщиками сетей исходя из имеющихся средств, требуемой производительности и надежности взаимодействия. Все это не имеет отношения к функционированию операционных систем, является внешним по отношению к ним и в нашем курсе рассматриваться не будет.

В современных сетевых вычислительных комплексах решение вопросов организации взаимоисключений при использовании общей линии связи, как правило, также находится вне компетенции операционных систем и вынесено на физический уровень организации взаимодействия. Ответственность за корректное использование коммуникаций возлагается на сетевые адаптеры, поэтому подобные проблемы мы тоже рассматривать не будем.

Из приведенного перечня мы с вами подробнее остановимся на решении вопросов, приведенных в пунктах 3–5.

Понятие протокола

Для описания происходящего в автономной операционной системе в лекции 2 было введено основополагающее понятие "процесс", на котором, по сути дела, базируется весь наш курс. Для того чтобы описать взаимодействие удаленных процессов и понять, какие функции и как должны выполнять дополнительные части сетевых операционных систем, отвечающих за такое взаимодействие, нам понадобится не менее фундаментальное понятие – протокол.

"Общение" локальных процессов напоминает общение людей, проживающих в одном городе. Если взаимодействующие процессы находятся под управлением различных операционных систем, то эта ситуация подобна общению людей, проживающих в разных городах и, возможно, в разных странах.

Каким образом два человека, находящиеся в разных городах, а тем более странах, могут обмениваться информацией? Для этого им обычно приходится прибегать к услугам соответствующих служб связи. При этом между службами связи различных городов (государств) должны быть заключены определенные соглашения, позволяющие корректно организовывать такой обмен. Если речь идет, например, о почтовых отправлениях, то в первую очередь необходимо договориться о том, что может представлять собой почтовое отправление, какой вид оно может иметь. Некоторые племена индейцев для передачи информации пользовались узелковыми письмами – поясами, к которым крепились веревочки с различным числом и формой узелков. Если бы такое письмо попало в современный почтовый ящик, то, пожалуй, ни одно отделение связи не догадалось бы, что это – письмо, и пояс был бы выброшен как ненужный хлам. Помимо формы представления информации необходима договоренность о том, какой служебной информацией должно снабжаться почтовое отправление (адрес получателя, срочность доставки, способ пересылки: поездом, авиацией, с помощью курьера и т. п.) и в каком формате она должна быть представлена. Адреса, например, в России и в США принято записывать по-разному. В России мы начинаем адрес со страны, далее указывается город, улица и квартира. В США все наоборот: сначала указывается квартира, затем улица и т. д. Конечно, даже при неправильной записи адреса письмо, скорее всего, дойдет до получателя, но можно себе представить растерянность почтальона, пытающегося разгадать, что это за страна или город – "кв.162"? Как видим, доставка почтового отправления из одного города (страны) в другой требует целого ряда соглашений между почтовыми ведомствами этих городов (стран).

Аналогичная ситуация возникает и при общении удаленных процессов, работающих под управлением разных операционных систем. Здесь процессы играют роль людей, проживающих в разных городах, а сетевые части операционных систем – роль соответствующих служб связи. Для того чтобы удаленные процессы могли обмениваться данными, необходимо, чтобы сетевые части операционных систем руководствовались определенными соглашениями, или, как принято говорить, поддерживали определенные протоколы. Термин "протокол" уже встречался нам в лекции 13, посвященной организации ввода-вывода в операционных системах, при обсуждении понятия "шина". Мы говорили, что понятие шины подразумевает не только набор проводников, но и набор жестко заданных протоколов, определяющий перечень сообщений, который может быть передан с помощью электрических сигналов по этим проводникам, т. е. в "протокол" мы вкладывали практически тот же смысл. В следующем разделе мы попытаемся дать более формализованное определение этого термина.

Необходимо отметить, что и локальные процессы при общении также должны руководствоваться определенными соглашениями или поддерживать определенные протоколы. Только в автономных операционных системах они несколько завуалированы. В роли таких протоколов выступают специальная последовательность системных вызовов при организации взаимодействия процессов и соглашения о параметрах системных вызовов.

Различные способы решения проблем 3–5, поднятых в предыдущем разделе, по существу, представляют собой различные соглашения, которых должны придерживаться сетевые части операционных систем, т. е. различные сетевые протоколы. Именно наличие сетевых протоколов позволяет организовать взаимодействие удаленных процессов.

При рассмотрении перечисленных выше проблем необходимо учитывать, с какими сетями мы имеем дело.

В литературе принято говорить о локальных   вычислительных сетях   (LAN – Local Area Network) и глобальных   вычислительных сетях   (WAN – Wide Area Network). Строгого определения этим понятиям обычно не дается, а принадлежность сети к тому или иному типу часто определяется взаимным расположением вычислительных комплексов, объединенных в сеть. Так, например, в большинстве работ к локальным сетям относят сети, состоящие из компьютеров одной организации, размещенные в пределах одного или нескольких зданий, а к глобальным сетям – сети, охватывающие все компьютеры в нескольких городах и более. Зачастую вводится дополнительный термин для описания сетей промежуточного масштаба – муниципальных или городских   вычислительных сетей   (MAN – Metropolitan Area Network) – сетей, объединяющих компьютеры различных организаций в пределах одного города или одного городского района. Таким образом, упрощенно можно рассматривать глобальные сети как сети, состоящие из локальных и муниципальных сетей. А муниципальные сети, в свою очередь, могут состоять из нескольких локальных сетей. На самом деле деление сетей на локальные, глобальные и муниципальные обычно связано не столько с местоположением и принадлежностью вычислительных систем, соединенных сетью, сколько с различными подходами, применяемыми для решения поставленных вопросов в рамках той или иной сети, – с различными используемыми протоколами.



Скачать документ

Похожие документы:

  1. Лекция №2. Сетевые операционные системы (ОС)

    Лекция
    Программные мониторы явились прообразом современных ОС, они стали первыми системными программами, предназначенными не для обработки данных, а для управления вычислительным процессом.
  2. Учебно-методический комплекс дисциплины операционные системы, среды и оболочки Специальность

    Учебно-методический комплекс
    Введение в операционные системы. Определение, назначение, состав и функции операционных систем. Классификация операционных систем. Инсталляция и конфигурирование операционной системы, начальная загрузка.
  3. Лекция 1/1 Основы телекоммуникаций и компьютерных технологий

    Лекция
    Количество информации в современном обществе стремительно нарастает, человек оказывается погруженным в море информа­ции. Чтобы быть востребованным, человек должен обладать ин­формационной культурой, т.
  4. Ые системы", "Операционные системы, среды и оболочки" и "Операционные системы и системное программирование" для студентов специальнос­тей факультета Кибернетики

    Документ
    Операционные системы. Лабораторный практикум для выполнения лабораторных и контрольных (домашних) работ дисциплин "Операционные системы", "Операционные системы, среды и оболочки" и "Операционные системы и
  5. Лекции по дисциплине Операционные системы 2005 г

    Лекции
    ОС – набор программ, которые обеспечивают возможность использования аппаратуры ЭВМ и предоставляют пользователю набор средств по интерфейсу для управления информацией и реализации прикладного программного обеспечения.

Другие похожие документы..