Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Если у лиц, страдающих избыточным весом, наблюдается нарушение жирового обмена вместе с диабетом и повышенным артериальным давлением, врачи говорят о...полностью>>
'Конкурс'
Медицинская деятельность, производство лекарственных средств, пропаганда и агитация безвозмездного массового донорства в г.Иваново и Ивановской област...полностью>>
'Рабочая учебная программа'
1.1. Цели и задачи курса – Основная задача изучения дисциплины « Логистика» - это реализация требований, установленных в государственном стандарте выс...полностью>>
'Документ'
6. В.С. Высоцкий. О моём старшине. Чёрные бушлаты. Высота. Мерцал закат, как блеск клинка. Разведка боем. Он вчера не вернулся из боя. Песня о госпита...полностью>>

Лекции по ботанике для студентов специальности «Агрономия»

Главная > Лекции
Сохрани ссылку в одной из сетей:

Лекции по ботанике для студентов специальности «Агрономия»

Настоящий лекционный курс подготовлен доцентом кафедры ботаники, физиологии растений и агробиотехнологии, кандидатом биологических наук В.А.Сурковым и адресован студентам РУДН специальности «Агрономия».

Курс лекций согласован с календарными планами учебных занятий по ботанике на осенний и весенний семестр и разработан в соответствии с программой, размещенной на Учебном портале РУДН:

/web-local/disc/disc_40/load/up.doc

Лекция № 1
Введение в ботанику. Цитология. Компоненты клетки. Цитоплазма.

Введение в ботанику.

Ботаника - наука о растениях.

Ботанические знания зародились и быстро накапливались с практической деятельностью человека. Ботаника как наука сформировалась более 2000 лет назад. Основоположниками ее были выдающиеся деятели древнего мира Аристотель (384 - 322 гг. до н. э.) и Феофраст (371 - 286 гг. до н. э.). Они обобщили накопленные сведения о разнообразии растений и их свойствах, приемах возделывания, размножения и использовании, географическом распространении.

В наши дни ботаника представляет собой большую многоотраслевую науку. Общая задача ее состоит в изучении отдельно взятых растений и их совокупностей - растительных сообществ. Структура и закономерности роста растений, их отношения с окружающей средой, закономерности распространения и распределения отдельных видов и всего растительного покрова на земном шаре; происхождение и эволюция царства растений, причины его разнообразия и классификация; запасы в природе хозяйственно ценных растений и пути их рационального использования, разработка научных основ введения в культуру (интродукции) новых кормовых, лекарственных, плодовых, овощных, технических и других растений - далеко не полный перечень вопросов, которые рассматриваются ботаническими науками.

Значение растений в природе и жизни человека.

Континенты нашей планеты, составляющие 150 млн. км2, в основном покрыты растительностью. Только ледяные пространства полюсов и высочайшие вершины гор не имеют растительности. Площади, занятые морями и океанами (акватории), составляют около 360 млн. км2. Здесь широко представлены водные растения.

Подавляющее число растений имеет зеленый цвет, обусловленный зеленым пигментом хлорофиллом, сосредоточенным в особых органеллах растительных клеток — хлоропластах. Уникальное свойство хлорофилла - участие в сложнейшем процессе трансформации электромагнитной энергии солнечного луча в химическую энергию органических веществ (фотосинтез). Процесс фотосинтеза разворачивается в поистине колоссальных масштабах. По определению К. А. Тимирязева, хлорофилловое зерно - тот фокус, та точка в мировом пространстве, где солнечный луч, превращаясь в химическую энергию, становится источником всей жизни на Земле. Точно определить объем работы, выполняемой растениями, трудно и даже невозможно. По весьма приблизительным подсчетам, растения в процессе фотосинтеза ежегодно образуют около 400 млрд. т органических веществ, при этом они связывают около 175 млрд. т углерода, но, возможно, гораздо больше.

Итак, в ходе эволюции жизни на Земле, зародившейся миллиарды лет назад, растения обособились как носители хлорофилла, как единственные организмы, способные синтезировать органические вещества из неорганических.

В ходе фотосинтеза параллельно с образованием органического вещества происходит выделение в атмосферу кислорода. До появления зеленых растений газовая оболочка Земли имела очень мало свободного кислорода. Практически можно считать, что весь кислород атмосферы возник благодаря фотосинтезу. Накопление свободного кислорода привело к появлению кислородного дыхания растений и животных. Возросли энергия жизненных процессов и скорость накопления массы органических веществ. Наличие свободного кислорода усилило также процессы химического выветривания горных пород и накопление в верхних слоях земной коры минеральных соединений, необходимых для питания растений.

Растительный покров играет первостепенную регулирующую роль в общем газообмене и в водном балансе Земли, защищает от разрушения почву, обогащает ее элементами питания, создает пищевую и энергетическую базу для всего животного мира.

Жизнь человека немыслима без использования растений. Это - пища, строительный материал, сырье для различных отраслей промышленности.

Разделы ботаники.

Ботанику как часть более общей науки - биологии, в свою очередь, подразделяют на ряд частных наук, в задачи которых входит изучение тех или иных закономерностей строения и жизни растений или растительного покрова.

Морфология - один из наиболее крупных и рано сформировавшихся разделов ботаники. Это наука о закономерностях возникновения и развития разнообразных жизненных форм растений и отдельных их органов. Заложение и развитие органов растения рассматривают и в ходе индивидуального развития отдельной особи от прорастания семени до конца жизни (онтогенез), и в ходе исторического развития (эволюции) всего вида или любой другой систематической группы, к которой относят данную особь (филогенез).

В процессе развития морфологии в ее недрах обособились еще более специализированные науки: цитология (закономерности строения и развития основной структурной единицы растений — клетки); гистология, или анатомия (заложение, развитие и строение разнообразных тканей, формирующих органы); эмбриология (закономерности развития и строения зародыша); органография (заложение, развитие и структура органов растения); палинология (строение пыльцы и спор).

Флорография. В задачу этой науки входит распознавание и описание видов. Виды, описанные флорографами, систематики распределяют в группы по признакам сходства, отражающим родство.

Систематика - наука о разнообразии видов и причинах этого разнообразия. Задача систематики - приведение в легко обозримую научную систему всех наших знаний о видах, описанных флорографами. На основании целой серии методов систематик объединяет родственные виды в систематические группы более высокого ранга - роды, семейства и т. д.

География растений (фитогеография) - крупнейший раздел ботаники, основная задача которого состоит в изучении закономерностей распространения и распределения растений и их сообществ (ценозов) на суше и в воде.

Экология. Жизнь растений зависит от окружающей среды (климата, почвы и др.), но и растения, в свою очередь, влияют на создание этой среды - принимают участие в почвообразовательном процессе, изменяют климат. Задача экологии - изучение строения и жизни растений в связи с окружающей средой. Эта наука имеет первостепенное значение для практического земледелия.

Физиология растений - наука о процессах жизнедеятельности растений, преимущественно об обмене веществ, движении, росте, ритмах развития, размножении и т. д.

Микробиология - наука об особенностях жизненных процессов, происходящих в микроскопических организмах, преобладающую часть которых составляют бактерии и некоторые грибы. Успехи почвенной микробиологии широко используют в сельскохозяйственной практике.

Палеоботаника - наука об ископаемых растениях прошлых геологических периодов.

Другие разделы ботаники настолько обособились в связи с решением специальных задач и применяемыми методами работы, что давно уже составляют особые науки, например биофизика, биохимия, радиобиология, генетика и др.

Взаимосвязь ботаники и агрономии.

Эти науки связаны общим объектом изучения, методами работы и историей развития. Ботаники исследуют закономерности строения и развития, видовой состав дикорастущих растений и их группировок; агрономы имеют дело с возделываемыми растениями. Агрономия возникла как приложение ботаники к растениеводству. Перед агрономами и ботаниками стоит одна цель - возможно более полное использование растений для практических потребностей человека. Комплексное использование растительных ресурсов, как природных, так и возделываемых, - важный показатель общего уровня развития страны и ее земледелия.

Цитология - наука о микроскопической и субмикроскопической структуре клетки и ее жизнедеятельности.

Клетка - это элементарная структурная и функциональная единица тела растений и животных, способная к самовоспроизведению. Первым увидел клетку английский естествоиспытатель Р. Гук при изучении покровной ткани бузины - пробки. Он усовершенствовал микроскоп, изобретенный Г. Галилеем в 1609 г., и использовал его для исследования тонких срезов органов растений. Свои наблюдения Р. Гук изложил в сочинении «Микрография», изданном в 1665 г., где он впервые применил термин «клетка». В 1833 г. английский ботаник Р. Броун обнаружил ядро, а в 1839 г. чешский физиолог Я. Пуркинье - цитоплазму. Многочисленные наблюдения клеточного строения растений и животных позволили немецким ученым - ботанику М. Шлейдену и зоологу Т. Шванну - в 1838 - 1839 гг. сформулировать клеточную теорию, суть которой заключается в том, что клетка - это основная элементарная структурная единица всех живых орга¬низмов. Клеточная теория доказывает единство происхождения, строения и эволюции растений и животных.

К концу XIX в. цитология окончательно сформировалась в самостоятельную науку. На базе светового микроскопа были изучены основные компоненты клетки, накапливались данные об их функциях.

Дальнейший прогресс цитологии связан с изобретением электронного микроскопа. В биологии его начали использовать в середине XX в.

Методы исследования клетки.

Применяемые для изучения клеток методы очень разнообразны. Основной из них - микроскопический. Большую роль продолжает играть световой микроскоп, современные модели которого дают увеличение до 2 тыс. раз. Но возможности светового микроскопа ограничены, частицы менее 0,2 мкм рассмотреть при помощи такого микроскопа невозможно. Электронный микроскоп дает увеличение в 200 - 300 тыс. раз и более. Здесь вместо пучка света используют поток электронов, движущихся с высокой скоростью.

Методом культуры тканей изучают структуру и жизнедеятельность живых клеток вне организма.

Цитохимический метод позволяет выявить наличие и определить количество различных веществ в клетке.

Разделить компоненты клетки с различной плотностью для изолированного изучения их можно с помощью метода центрифугирования. Извлечь из клетки отдельные компоненты (ядро, митохондрии и др.) позволяет метод микроскопической хирургии.

Разнообразие клеток.

Все разнообразие форм клеток можно свести к двум группам: паренхимные клетки - длина равна ширине или превышает ее не более чем в 2 - 3 раза; прозенхимные клетки - длина превышает ширину во много раз. Средняя длина клеток высших растений 10 - 100 мкм. Наиболее крупные паренхимные клетки достигают в длину несколько миллиметров и видны невооруженным глазом, например клетки плодов арбуза, лимона, клубней картофеля. Но особенно большую длину имеют прозенхимные клетки стеблей льна (40 мм), крапивы (80 мм), рами (200 мм).

Компоненты клетки.

Рассматривая взрослую растительную клетку при помощи светового микроскопа, можно увидеть следующие компоненты: плотную стенку, одну большую или 2 - 3 небольшие вакуоли, занимающие центральную часть клетки; цитоплазму, расположенную между стенкой клетки и вакуолью; находящееся в цитоплазме ядро.

Ядро и цитоплазма - живые части клетки и в совокупности составляют протопласт. Стенка и вакуоли - неживые части клетки, производные протопласта, продукты его жизнедеятельности.

Цитоплазма - сложная структурная система, имеет мембранную организацию, состоит из гиалоплпзмы и органелл. Ее структуру образуют тонкие (4 - 10 нм), довольно плотные пленки - биологические мембраны. Основу их составляют липиды. Молекулы липидов расположены упорядоченно - перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные по отношению к воде (гидрофобные), - внутрь. Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды.

Мембраны образуют пограничный слой цитоплазмы, а также внешнюю границу ее органелл и участвуют в создании их внутренней структуры. Они делят цитоплазму на изолированные отсеки, в которых одновременно и независимо друг от друга могут протекать биохимические процессы часто в противоположном направлении (например, синтез и распад).

Одно из основных свойств биологических мембран - избирательная проницаемость (полупроницаемость): одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации. Мембраны во многом определяют химический состав цитоплазмы и клеточного сока.

Плазмодесмы - тончайшие цитоплазматические нити, которые осуществляют связь между клетками. Клеточная пластинка, образующаяся при цитокинезе, пронизана трубочками эндоплазматического ретикулума, которые не разобщаются. На их основе и формируются плазмодесмы. Стенка плазмодесменного канала выстлана плазмалеммой, соединяющей плазмалеммы смежных клеток. В центре канала проходит трубка, сохраняющая непрерывность ретикулума обеих клеток. Между плазмалеммой и трубкой находится гиалоплазма, также непрерывная для обеих клеток. Плазмодесмы чаще всего бывают собраны в группы по нескольку десятков. Поодиночке они располагаются в стенках, не имеющих вторичных утолщений.

Плазмалемма и тонопласт. Плазмалемма — это мембрана, отграничивающая цитоплазму от стенки клетки и обычно плотно прилегающая к ней. Иногда плазмалемма бывает волнистой или образует глубокие складки. Она регулирует обмен веществ клетки с окружающей средой, а также участвует в синтезе веществ. Тонопласт отграничивает цитоплазму от вакуоли. Функция его та же, что и плазмалеммы.

Гиалоплазма. Это жидкая непрерывная среда, в которую погружены органеллы. Гиалоплазма содержит ферменты и нуклеиновые кислоты. Белки, входящие в состав гиалоплазмы, образуют сеть из тонких фибрилл (диаметром 2 - 3 нм) - трабекулярную систему, которая связывает между собой органеллы. Эта система очень динамична, она может распадаться при изменении внешних условий. Гиалоплазма способна к активному движению, которое может быть вращательным - вдоль стенки клетки, если в центре находится одна большая вакуоль, и струйчатым - по тяжам, пересекающим центральную вакуоль, в разных направлениях. Скорость движения зависит от температуры, интенсивности света, снабжения кислородом и других факторов. При движении гиалоплазма увлекает за собой органеллы. Гиалоплазма осуществляет взаимосвязь органелл, участвует в обмене, транспорте веществ, передаче раздражения и т. д.

Эндоплазматический ретикулум (эндоплазматическая сеть). Представляет собой отграниченную, мембранами систему взаимосвязанных субмикроскопических каналов и цистерн, пронизывающих гиалоплазму. Имеются две формы ретикулума: гранулярный (шероховатый) и агранулярный (гладкий). Гранулярный эндоплазматический ретикулум несет на поверхности мелкие гранулы - рибосомы. Агранулярный эндоплазматический ретикулум состоит из ветвящихся трубочек, отходящих от цистерн гранулярного ретикулума, не имеет рибосом. Обычно он развит слабее, чем гранулярный. Участвует в синтезе и транспорте эфирных масел, смол, каучука.

Рибосомы. Это гранулы диаметром около 20 нм, расположенные в гиалоплазме или прикрепленные к поверхности мембран эндоплазматического ретикулума. Они обнаружены также в митохондриях и пластидах. Рибосомы состоят из белка и рибонуклеиновой кислоты (РНК) и не имеют мембранной структуры. Функция рибосом - синтез белка, самовоспроизводство живой материи. Этот процесс происходит в рибосомах, расположенных группой и связанных между собой нитевидной молекулой и-РНК. Такие группы называют полисомами. Считают, что рибосомы формируются в ядре.

Аппарат Гольджи. Состоит из диктиосомы и пузырьков Гольджи. Диктиосома представляет собой стопку из 5 - 7 плоских цистерн, ограниченных агранулярной мембраной. Диаметр цистерн около 1 мкм, толщина 20 - 40 нм. Цистерны не соприкасаются друг с другом. Пузырьки Гольджи отчленяются от краев цистерн и распространяются по всей гиалоплазме. В диктиосоме происходят синтез, накопление и выделение полисахаридов. Пузырьки Гольджи транспортируют их, в том числе и к плазмалемме. Мембрана пузырьков встраивается в плазмалемму, а содержимое оказывается снаружи от плазмалеммы и может включаться в стенку. Пузырьки Гольджи могут включаться и в тонопласт.

Происхождение диктиосом еще точно не установлено. Считают, что в их образовании принимает участие эндоплазматический ретикулум. В некоторых клетках аппарат Гольджи отсутствует.

Сферосомы. Округлые блестящие тельца диаметром 0,5 - 1 мкм. Это центры синтеза и накопления растительных масел. Они отшнуровываются от концов тяжей эндоплазматического ретикулума. Мембрана, расположенная на поверхности сферосомы, по мере накопления масла редуцируется, и от нее остается только наружный слой.

Лизосомы. Пузырьки размером 0,5—2 мкм, имеющие на поверхности мембрану. Содержат ферменты, которые могут расщеплять белки, липиды, полисахариды и другие органические соединения. Образуются так же, как и сферосомы, из тяжей эндоплазматического ретикулума. Их функция - разрушение отдельных органелл или участков цитоплазмы (локальный автолиз), необходимое для обновления клетки.

Митохондрии. Форма митохондрий чрезвычайно разнообразна - овальная, округлая, цилиндрическая, гантелевидная, ветвистая и т.д. Длина их равна 2 - 5 мкм, диаметр — 0,3 - 1 мкм. На поверхности митохондрии находятся две мембраны. Внутренняя мембрана образует выросты в полость митохондрии в виде гребней или трубочек, называемых кристами. Кристы значительно увеличивают мембранную поверхность митохондрии. Пространство между кристами заполнено жидким веществом - матриксом, в котором находятся рибосомы и содержится дезоксирибонуклеиновая кислота (ДНК). Поверхность внутренней мембраны покрыта мельчайшими тельцами, имеющими шаровидную головку и ножку (АТФ-сомы).

Митохондрии - это энергетические лаборатории клетки. Здесь происходят расщепление углеводов, жиров и других органических веществ при участии кислорода (дыхание) и синтез АТФ. Выделяемая при дыхании энергия преобразуется в энергию макроэргических связей молекулы АТФ, которая затем используется для осуществления процессов жизнедеятельности клетки - деления, поглощения и выделения веществ, синтеза и т.д.

Пластиды. Бывают только у растений. Эти органеллы имеют на поверхности две мембраны. В зависимости от окраски различают три типа пластид: хлоропласт - зеленого цвета; хромопласты - желтого, оранжевого, красного цветов; лейкопласты - бесцветные.

Хлоропласты содержат зеленый пигмент хлорофилл, а также пигменты из группы каротиноидов - каротин (оранжевый) и ксантофилл (желтый). Именно с хлорофиллом связана основная функция хлоропластов - синтез органических веществ из неорганических при участии энергии света (фотосинтез). Поэтому хлоропласты присутствуют только в клетках наземных органов, на которые падает солнечный свет. Хлоропластам растения обязаны зеленой окраской.

У высших растений хлоропласты в большинстве случаев имеют линзовидную форму. Диаметр их 4 - 6 мкм, толщина 1 - 3 мкм. У водорослей хлоропласты, называемые также хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую форму, лентовидную, сетчатую и др. Обычно в клетке имеются от 1 до 50 хлоропластов. Располагаются они в постенном слое цитоплазмы.

Внутри хлоропластов находится однородное вещество - строма, пронизанная системой параллельно расположенных мембран. Мембраны имеют вид плоских мешков, их называют тилакоидами, или ламеллами. У большинства высших растений часть тилакоидов имеет дисковидную форму. Эти тилакоиды собраны в стопки, называемые гранами. Хлорофилл и каротиноиды находятся в каждой из двух мембран тилакоида граны. Граны связаны между собой тилакоидами стромы. Внутренняя мембрана оболочки хлоропласта иногда образует складки и переходит в тилакоиды стромы. В строме находятся молекулы ДНК, рибосомы, капли липидов, называемые пластоглобулами, крахмальные зерна и другие включения.

Крахмал образуется в хлоропластах из продуктов фотосинтеза, его называют фотосинтетическим, или первичным. При помощи ферментов фотосинтетический крахмал осахаривается и в виде глюкозы транспортируется из листа на построение органов или в запас.

Лейкопласты не содержат пигментов. По размеру они значительно меньше хлоропластов и не имеют строго определенной формы. Лейкопласты присутствуют чаще всего в клетках тканей и органов, на которые не падает солнечный свет: в корнях, клубнях, семенах и др. Внутренняя мембранная система у лейкопластов развита значительно слабее, чем у хлоропластов. В строме имеются молекулы ДНК, рибосомы, пластоглобулы. Основная функция лейкопластов - синтез и накопление запасных питательных продуктов, в первую очередь крахмала, иногда белков, редко масла. Лейкопласты, накапливающие крахмал, называют амилопластами. В них из сахаров, поступающих из фотосинтезирующих органов, образуются крахмальные зерна различного размера и формы - вторичный крахмал. Запасной белок может откладываться в виде кристаллов или аморфных гранул, масло - в виде пластоглобул.

Хромопласты содержат красные, оранжевые, желтые пигменты из группы каротиноидов. По размеру они меньше хлоропластов, форма их очень разнообразна. Внутренняя мембранная система у них чаще всего отсутствует.

В зависимости от формы накопления каротиноидов различают хромопласты глобулярного, фибриллярного (трубчатого) и кристаллического типов. У хромопластов наиболее распространенного глобулярного типа пигменты растворены в пластоглобулах. У хромопластов фибриллярного типа каротиноиды не только присутствуют в пластоглобулах, но и образуют группы параллельных нитей или трубок, расположенных в строме. У хромопластов кристаллического типа каротиноиды присутствуют главным образом в виде кристаллов различной формы, определяющих форму самой пластиды (серповидную, ромбовидную, игловидную и т. д.).

Хромопласты встречают в клетках лепестков некоторых растений, зрелых плодов, осенних листьев. Их функция в процессе обмена веществ не выяснена. Косвенное биологическое значение хромопластов состоит в привлечении насекомых для перекрестного опыления и животных для распространения семян.

В процессе эволюции первыми из пластид появились хлоропласты, из которых при расчленении тела растения на органы образовались лейкопласты и хромопласты. В онтогенезе почти все виды пластид могут переходить друг в друга. Наиболее часто происходит превращение лейкопластов в хлоропласты (например, при образовании зародыша из оплодотворенной яйцеклетки) и хлоропластов в хромопласты (например, при осеннем пожелтении листьев). Лишь хромопласты в природных условиях, как правило, не превращаются в другие виды пластид. Количество пластид в клетке увеличивается за счет деления их путем перетяжки.

Лекция № 2
Ядро. Деление ядра и клетки. Производные протопласта.

Ядро.

Ядро может функционировать только в цитоплазматической среде. Это - место хранения и воспроизводства наследственной информации, определяющей признаки данной клетки и всего организма в целом, а также центр управления синтезом белка. Если из клетки удалить ядро, то она вскоре погибнет. Обычно в клетке имеется одно ядро, но у некоторых видов водорослей и у грибов многоядерные клетки. Бактерии и сине-зеленые водоросли не имеют оформленного ядра.

Форма ядра разнообразна, но обычно соответствует форме клетки: в паренхимных клетках чаще всего шаровидная, в прозенхимных - линзовидная или веретеновидная. Диаметр ядра клеток вегетативных органов покрытосеменных растений 10 - 25 мкм. У плесневых грибов диаметр ядра всего 1 - 2 мкм, а у харовых водорослей может достигать 2,5 мм. В процессе онтогенеза форма, размер и местоположение ядра в клетке могут изменяться.

Под световым микроскопом ядро имеет вид пузырька с 1 -3 темными пятнышками - ядрышками. Оно состоит из ядерной оболочки, нуклеоплазмы, хромосом, ядрышек.

Ядерная оболочка отграничивает содержимое ядра от цитоплазмы. Состоит из двух мембран с промежутком между ними, называемым перинуклеарным пространством. Толщина мембран 10 нм, а толщина перинуклеарного пространства варьирует. Общая толщина оболочки 40 - 80 нм. Внутренняя мембрана оболочки агранулярная, к наружной мембране прикреплены рибосомы. По структуре и химическому составу ядерная оболочка близка к эндоплазматическому ретикулуму, тем более что ее наружная мембрана образует выросты, переходящие в ретикулум цитоплазмы. Ядерная оболочка имеет особые образования - ядерные поры. Это сложные структуры. По границе поры, образованной в результате слияния двух мембран, расположены гранулы, от которых отходят фибриллы. Часть фибрилл сходится в центре, формируя диафрагму. Диаметр поры 80—90 нм. Через поры макромолекулы проходят из нуклеоплазмы в гиалонлазму и в обратном направлении. Ядерная оболочка контролирует обмен веществ между ядром и цитоплазмой, способна к синтезу белков и липидов.

Нуклеоплазма представляет собой коллоидный раствор, в котором размещены хромосомы и ядрышки. В состав нуклеоплазмы входят различные ферменты, нуклеиновые кислоты. Она не только осуществляет связь между органеллами ядра, но и трансформирует вещества, проходящие через нее.

Хромосомы могут находиться в двух состояниях, В рабочем состоянии это деконденсированные в различной степени, тонкие (10 нм) нитчатые структуры, активно участвующие в процессе обмена веществ. Они видны только под электронным микроскопом. Во время деления ядра хромосомы максимально конденсируются, становятся короткими и толстыми (видны под световым микроскопом). Выполняют функцию распределения и переноса генетической информации, в процессе обмена веществ не участвуют, поглощают многие красители и интенсивно окрашиваются.

По химической природе хромосома представляет собой нуклеопротеид, состоящий из ДНК и белка. Составные части (мономеры) молекулы ДНК - нуклеотиды. Нуклеотид имеет три компонента - остаток фосфорной кислоты, сахар дезоксирибозу и одно из четырех азотистых оснований: аденин, гуанин, тимин, цитозин. Нуклеотиды соединяются в длинную цепь. Молекула ДНК состоит из двух таких чрезвычайно длинных цепей, которые связаны между собой азотистыми основаниями, причем аденин всегда соединяется с тимином, а гуанин - с цитозином. Эта двойная цепь закручена вокруг оси. Одно из важнейших свойств молекулы ДНК - репликация (самоудвоение), при которой цепочки нуклеотидов расходятся и каждая из них достраивает утраченную. Участок молекулы ДНК, определяющий способность к синтезу одной полипептидной цепи, называют геном. Белок в хромосоме располагается на поверхности молекулы ДНК в виде футляра.

Хромосома имеет первичную перетяжку (неконденсированный участок), где находится центромера (пластинчатая структура дисковидной формы), а иногда и вторичную, которая отделяет от нее небольшой фрагмент - спутник.

Каждый вид растений содержит в клетке строго определенное число хромосом. В соматических клетках это число обычно диплоидное (2n). Оно образуется в результате слияния двух половых клеток с гаплоидным (моноплоидным) числом хромосом (n).

Ядрышко. Обычно это сферическое тельце диаметром 1 - 3 мкм, состоящее в основном из белка и РНК. Молекула РНК, как и молекула ДНК, представляет цепочку нуклеотидов, но нуклеотид РНК содержит вместо дезоксирибозы рибозу, а вместо тимина урацил. В отличие от молекулы ДНК, молекула РНК имеет лишь одну такую цепочку.

Ядрышко обычно контактирует со вторичной перетяжкой хромосомы, называемой организатором ядрышка, на которой происходит матричный синтез р-РНК. Затем р-РНК объединяется с белком, в результате образуются гранулы рибонуклеопротеидов - предшественников рибосом, которые попадают в нуклеоплазму и через поры ядерной оболочки проникают в цитоплазму, где заканчивается их оформление.

В ядре может быть одно или несколько ядрышек.



Скачать документ

Похожие документы:

  1. Учебная программа курса ботаники для студентов специальности 110400 «Агрономия»

    Учебная программа курса
    В соответствии с Федеральным государственным образовательным стандартом высшего профессионального образования по направлению подготовки 110400 Агрономия (квалификация (степень) «бакалавр»), утвержденным приказом Министерства образования
  2. Конспект лекций по культурологии Для студентов всех специальностей

    Конспект
    Слово “культура” происходит от латинского слова культивировать, или возделывать почву. В средние века это слово стало обозначать прогрессивный метод возделывания зерновых, таким образом возник термин agriculture или искусство земледелия.
  3. Рабочая программа учебная дисциплина Ботаника Для студентов очного обучения по специальности 110200 Агрономия

    Рабочая программа
    1.1 Ботаника как наука о растениях является фундаментальной теоретической дисциплиной, создающей базу для изучения студентами остальных биологических (например, физиологии растений, микробиологии, генетики и др.
  4. А. А. Терехин курсовая работа по ботанике методические рекомендации

    Курсовая
    С.Ф.Пономаренко, В.А.Сурков, А.А.Терехин. Курсовая работа по ботанике. Методические рекомендации для студентов специальностей «Агрономия» и «Фармация».
  5. Учебно-практическое пособие для студентов специальностей: 0604, 0605, 0606, 0611, 3513, 0204, 0211, 0524

    Учебно-практическое пособие
    В работе изложены основные вопросы курса «Концепции современного естествознания». В пособии даны общие методические указания по работе над курсом КСЕ, список литературы, рекомендуемой для изучения курса, рабочая программа дисциплины,

Другие похожие документы..