Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Публичный отчет'
Итак, система «СБиС Электронная отчетность» установлена на вашем компьютере и готова для формирования и отправки вашего первого отчета. Пройдем все ...полностью>>
'Автореферат диссертации'
Защита состоится 21 ноября 2006 г. в часов на заседании диссертационного совета К 212.294.04 в Тихоокеанском государственном университете, по адресу:...полностью>>
'Регламент'
В соответствии с постановлением Правительства Москвы от 21.02.2006 г. № 112-ПП «О Регламенте Правительства Москвы» в целях оптимизации работы префект...полностью>>
'Документ'
Невзирая на пряный национальный колорит и оригинальную авторскую манеру повествования, романы М. Павича (которые с точки зрения традиционного романа ...полностью>>

Рабочая программа по дисциплине «Высшая математика» для подготовки дипломированных специалистов по направлениям: 653300 Эксплуатация наземного транспорта и транспортного

Главная > Рабочая программа
Сохрани ссылку в одной из сетей:

1

Смотреть полностью

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПИЩЕВЫХ ПРОИЗВОДСТВ

УТВЕРЖДАЮ

Вице-президент, проректор

по учебно-методической работе

______________проф. С.Е. Траубенберг

«____» _________________ 2002г.

РАБОЧАЯ ПРОГРАММА ПО ДИСЦИПЛИНЕ

«Высшая математика»

для подготовки дипломированных специалистов по направлениям:

653300 – Эксплуатация наземного транспорта и транспортного

оборудования

Специальность 230100 – Эксплуатация и обслуживание транспортных и

технологических машин и оборудования (в пищевой промышленности)

655800 – Пищевая инженерия

Специальность 271300 – Пищевая инженерия малых предприятий

Специальность 170600 – Машины и аппараты пищевых производств

Специальность 551800 – Технологические машины и оборудования

657900 – Автоматизированные технологии и производства

Специальность 210200 – Автоматизация технологических процессов

и производств (в пищевой промышленности)

656900 – Технология полиграфического и упаковочного производства

Специальность 072500 – Технология и дизайн упаковочного производства

651900 – Автоматизация и управление

Специальность 210100 – Управление и информатика в технических системах

650800 – Теплоэнергетика

Специальность 100800 – Энергетика теплотехнологий

Специальность 550900 – Теплоэнергетика

656500 – Безопасность жизнедеятельности

Специальность 330500 – Безопасность технологических процессов

и производств

Москва 2002
  1. Цели и задачи дисциплины

Целью преподавания дисциплины является обеспечение базовой математической подготовки специалистов, позволяющей успешно решать современные проблемы науки и техники. Основные задачи изучения дисциплины состоят, во-первых, в обучении студентов фундаментальным основам современной математики, формировании математического мировоззрения, развитии научного, логического мышления, необходимого в дальнейшей работе по специальности; во-вторых, в овладении студентами достаточным количеством математических методов, выработке твердых навыков построения математических моделей и умения провести вычислительный расчет.

  1. Требования к уровню освоения содержания дисциплины

В результате изучения курса высшей математики студент должен:

а) освоить основные теоретические методы математики, используемые в инженерной практике или служащие для обоснования используемых на практике алгоритмов;

б) приобрести твердые навыки решения математических задач с доведением решения до практически приемлемого результата и развить на этой основе логическое и алгоритмическое решение;

в) выработать начальные навыки математического исследования прикладных вопросов;

г) выработать умение самостоятельно разбираться в математическом аппарате, содержащемся в литературе, связанной со специальностью студента;

д) уметь при решении задач выбирать и использовать необходимые вычислительные методы и средства, а также таблицы и справочники.

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по направлению

653300 – Эксплуатация наземного транспорта и транспортного оборудования

Специальность 230100 – Эксплуатация и обслуживание транспортных и технологических машин и оборудования (в пищевой промышленности)

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

51

34

17

17

119

Практические занятия (час)

34

34

34

34

136

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

97

90

85

85

357

Общая трудоемкость дисциплины (час)

182

158

136

136

612

Вид итогового контроля

экз.

зачет

зачет

экз.

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по направлению 655800Пищевая инженерия

Специальность 271300 – Пищевая инженерия малых предприятий

Специальность 170600 – Машины и аппараты пищевых производств

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

51

34

17

17

119

Практические занятия (час)

34

34

34

34

136

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

80

65

50

50

245

Общая трудоемкость дисциплины (час)

165

133

101

101

500

Вид итогового контроля

экз.

экз.

экз.

зачет

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по специальности

551800 – Технологические машины и оборудования

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

51

34

17

17

119

Практические занятия (час)

34

34

34

34

136

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

100

90

85

82

357

Общая трудоемкость дисциплины (час)

185

158

136

133

612

Вид итогового контроля

экз.

экз.

экз.

зачет

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по направлению 657900 – Автоматизированные технологии и производства

Специальность 210200 – Автоматизация технологических процессов

и производств (в пищевой промышленности)

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

34

68

51

34

187

Практические занятия (час) + лабораторные

51

68

51

34+17

221

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

115

121

121

115

472

Общая трудоемкость дисциплины (час)

200

257

223

200

880

Вид итогового контроля

экз.

экз.

экз.

экз.

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по направлению 656900 – Технология полиграфического и упаковочного

производства

Специальность 072500 – Технология и дизайн упаковочного производства

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

51

34

17

17

119

Практические занятия (час)

34

34

34

34

136

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

65

56

45

45

211

Общая трудоемкость дисциплины (час)

150

124

96

96

466

Вид итогового контроля

экз.

зачет

экз.

зачет

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по направлению 651900 – Автоматизация и управление

Специальность 210100 – Управление и информатика в технических

системах

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

34

68

51

34

187

Практические занятия (час) + лабораторные

51

68

51

34+17

221

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

85

122

100

85

392

Общая трудоемкость дисциплины (час)

170

258

202

170

800

Вид итогового контроля

экз.

экз.

экз.

экз.

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по направлению 650800 – Теплоэнергетика

Специальность 100800 – Энергетика теплотехнологий

Специальность 550900 – Теплоэнергетика

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

51

34

34

34

153

Практические занятия (час)

68

51

34

34

187

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

100

90

85

85

360

Общая трудоемкость дисциплины (час)

219

175

153

153

700

Вид итогового контроля

экз.

экз.

экз.

экз.

    1. Объем дисциплины и виды учебной работы (математика)

для подготовки дипломированных специалистов по направлению 656500 – Безопасность жизнедеятельности

Специальность 330500 – Безопасность технологических процессов

и производств

Вид учебной работы

Семестры

Всего часов

1

2

3

4

Лекции (час)

51

34

34

34

153

Практические занятия (час)

51

34

34

34

153

Расчетно-графические работы

(количество работ в семестр)

2

2

2

2

Самостоятельная работа (час)

75

60

60

60

255

Общая трудоемкость дисциплины (час)

177

128

128

128

561

Вид итогового контроля

экз.

зачет

экз.

зачет

  1. Содержание дисциплины

    1. Тематический план

№ п/п

Раздел дисциплины

Лекции

Практ.

зан.

1

2

3

4

1

2

1 СЕМЕСТР

Линейная алгебра и аналитическая геометрия

Математический анализ. Дифференциальное исчисление функции одной переменной

51 часа

68 часов

№ п/п

Раздел дисциплины

Лекции

Практ.

зан.

1

2

3

4

3

4

5

6

7

8

9

10

2 СЕМЕСТР

Математический анализ. Интегральное исчисление

Обыкновенные дифференциальные уравнения

3 СЕМЕСТР

Кратные интегралы. Теория поля.

Ряды.

Операционное исчисление

Уравнения математической физики.

4 СЕМЕСТР

Теория вероятностей.

Численные методы.

68 часа

51 часа

34 часа

68 часа

51 часа

51 часа

Замечание. Тематический план и содержание разделов математики соответствует предельному объему дисциплины среди названных направлений и специальностей. Для каждой специальности в календарных планах необходимо учитывать фактический объем часов, соответственно изменяя тематический план и сокращая содержание разделов.

    1. Содержание разделов дисциплины.

1 СЕМЕСТР

Лекции – 34 часа, практические занятия – 68 часов.

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Система линейных уравнений. Матрица системы, расширенная матрица системы. Метод Гаусса. Свободные и базисные (главные) переменные (неизвестные). Совместные (определенные и неопределенные) и несовместные системы. Метод Гаусса с выбором главного элемента (метод Жордана-Гаусса).

Определитель 2-го порядка. Миноры, алгебраические дополнения. Определители 3-го порядка и n-го порядка. Разложение определителя по элементам строки (столбца). Свойства определителей.

Формулы Крамера для решения n-уравнений с n неизвестными. Действия над матрицами. Умножение матриц (в частности, умножение на вектор-матрицу столбец). Матричная форма записи линейных уравнений. Обратная матрица. Матричный метод решения линейных уравнений. Ранг матрицы. Теорема о базисном миноре. Методы вычисления ранга матрицы. Теорема Кронекера-Капелли

Определение вектора. Операции над векторами. Декартова система координат на плоскости и в пространстве. Координаты вектора. Длина вектора. Единичный вектор. Косинусы углов вектора с координатными осями – направляющие косинусы. Расстояние между двумя точками. Деление отрезка в заданном отношении.

Скалярное произведение векторов и его свойства. Угол между векторами. Проекция вектора на направление. Векторное произведение векторов и его свойства. Смешанное произведение векторов, свойства и применение. Условия коллинеарности и компланарности векторов.

Прямая на плоскости: общее уравнение прямой, каноническое уравнение прямой, уравнение прямой, проходящей через две точки, параметрические уравнения прямой, уравнение прямой с угловым коэффициентом. Взаимное расположение двух прямых: угол между прямыми, условие параллельности и перпендикулярности прямых. Расстояние от точки до прямой.

Плоскость: общее уравнение плоскости. Уравнение плоскости, проходящей через три заданные точки. Угол между плоскостями. Взаимное расположение плоскостей. Расстояние от точки до плоскости. Прямая в пространстве: канонические и параметрические уравнения прямой, уравнения прямой, проходящей через две точки; общие уравнения прямой в пространстве, преобразование общих уравнений к каноническим. Условия параллельности и перпендикулярности прямых (прямой и плоскости) в пространстве.

Кривые второго порядка. Эллипс, гипербола и парабола, их свойства и канонические уравнения. Приведение уравнения второго порядка к каноническому виду. Классификация кривых второго порядка на плоскости.

Поверхности второго порядка. Канонические уравнения некоторых поверхностей второго порядка. Понятие о классификации поверхностей второго порядка.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧЕСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Действительные числа и абсолютная величина числа. Числовые множества. Понятие функции, способы ее задания. Числовые последовательности. Предел последовательности. Бесконечно малые и бесконечно большие последовательности. Связь между ними. Ограниченные и монотонные последовательности. Основные теоремы о пределах; арифметические свойства пределов.

Теорема Вейерштрасса о сходимости монотонной ограниченной последовательности. Число "e". Понятие о натуральных логарифмах. Предел функции. Определение предела по Коши и по Гейне. Односторонние пределы. Два замечательных предела. Сравнение порядков бесконечно малых и бесконечно больших функций. Символы "о" и "О". Эквивалентные бесконечно малые, их применение к вычислению пределов.

Непрерывность функций. Точки разрыва. Свойства непрерывных функций. Свойства непрерывных функций на отрезке: теорема Вейерштрасса и теорема Больцано-Коши. Элементарные функции и некоторые классы элементарных функций (многочлены, рациональные функции, алгебраические функции, трансцендентные).

Производная функции. Механический и геометрический смысл производной. Уравнения касательной и нормали. Необходимое условие существования производной. Правила и формулы дифференцирования. Дифференцирование сложной, обратной, заданной параметрически и неявно функции. Производная параметрически заданной функции. Логарифмическая производная. Производная обратной функции. Производная неявно заданной функции.

Теоремы о среднем: теорема Ферма, теорема Ролля, теорема Лагранжа. Теорема Коши. Правило Лопиталя.

Дифференциал функции, его геометрический смысл и применение к приближенным вычислениям. Инвариантность формы дифференциала. Производные высших порядков. Формулы Тейлора и Маклорена с остаточным членом в форме Лагранжа и в форме Пеано. Представление по формуле Тейлора основных элементарных функций.

Исследование функций с помощью производных. Возрастание и убывание функций; необходимые и достаточные условия. Экстремумы функций; достаточные условия экстремума.

Наибольшее и наименьшее значения функции на отрезке. Выпуклость и вогнутость функций. Точки перегиба. Асимптоты функций. Схема исследования функции и построение графика функции.

Функция двух переменных (нескольких переменных). Область определения. Предел и непрерывность функции нескольких переменных. Геометрический образ. Линии уровня. Частные производные. Производная по направлению. Градиент. Полный дифференциал. Экстремум функции двух переменных.

Комплексные числа, комплексная плоскость. Алгебраические операции над комплексными числами. Тригонометрическая форма комплексного числа. Формула Муавра. Показательная форма комплексного числа. Формулы Эйлера.

2 СЕМЕСТР

Лекции – 68 часа, практические занятия – 68 часа.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

Первообразная функция и неопределенный интеграл. Свойства определенного интеграла. Таблица основных интегралов.

Замена переменной в интеграле. Простейшие примеры на замену переменной в интеграле – непосредственное интегрирование. Интегрирование алгебраических выражений, содержащих квадратный трехчлен в знаменателе и квадратный трехчлен под радикалом в знаменателе.

Интегрирование рациональных дробей (для правильных рациональных функций рассматривается три случая: знаменатель имеет различные действительные корни; знаменатель имеет действительные корни, некоторые из них кратные; знаменатель может содержать неприводимый квадратный трехчлен не выше первой степени).

Интегрирование по частям.

Интегрирование некоторых классов тригонометрических функций: универсальная подстановка и некоторые частные подстановки. Интегрирование простейших иррациональных функций, с помощью замены переменной сводящихся к интегрированию рациональных функций. Понятие о «неберущихся интегралах».

Определенный интеграл. Теорема существования определенного интеграла (без доказательства). Свойства определенного интеграла.

Интеграл как функция верхнего предела. Теорема о производной интеграла по переменной верхней границе. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям.

Несобственные интегралы (без признаков сходимости). Приближенное вычисление определенного интеграла.

Геометрические приложения определенного интеграла: формулы для вычисления площадей плоских фигур, длины дуги, объема тела по заданным площадям поперечных сечений, объема тела вращения.

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Дифференциальные уравнения первого порядка. Общее и частное решение дифференциального уравнения. Задача Коши. Теорема существования и единственности решения уравнения . Уравнения с разделяющимися переменными. Однородные уравнения относительно переменных x и y.

Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли. Решение этих уравнений методом вариации произвольной постоянной. Дифференциальные уравнения в полных дифференциалах.

Дифференциальные уравнения второго порядка. Общее и частное решение. Задача Коши. Теорема существования и единственности решения уравнения. Уравнения второго порядка, допускающие понижение порядка (два типа: и ).

Линейные дифференциальные уравнения второго порядка. Однородные уравнения. Понятие о линейной зависимости и линейной независимости решений линейного однородного уравнения второго порядка. Определитель Вронского и его свойства. Теорема о структуре общего решения однородного и неоднородного линейного уравнения второго порядка.

Решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами. Решение неоднородных дифференциальных уравнений с правой частью в виде квазимногочлена.

Некоторые частные случаи решения линейных дифференциальных уравнений с правой частью специального вида: правая часть – многочлен; правая часть – произведение многочлена на показательную функцию; правая часть равна функции A cos kx + B sin kx; правая часть – сумма квазимногочленов.

Метод вариации постоянных для решения линейных неоднородных уравнений.

3 СЕМЕСТР

Лекции – 51 часа, практические занятия – 51 час.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ТЕОРИЯ ПОЛЯ

Функции нескольких переменных. Частные производные и дифференциалы высших порядков, их свойства. Формула Тейлора.

Производная по направлению. Градиент и его свойства. Экстремум функции нескольких переменных. Необходимые условия экстремума.

Достаточные условия экстремума. Условный экстремум. Метод неопределенных множителей Лагранжа.

Задачи, приводящие к понятию кратного интеграла. Определение и основные свойства двойного и тройного интегралов. Теорема о существовании кратного интеграла.

Геометрический смысл двойного интеграла. Вычисление двойного интеграла путем сведения его к повторному. Вычисление двойного интеграла в полярной системе координат.

Вычисление тройного интеграла. Криволинейные системы координат. Якобиан и его геометрический смысл. Замена переменных в кратных интегралах.

Применение кратных интегралов к решению задач механики и геометрии (площади, объемы, масса тела и др.).

Криволинейные интегралы 1-го и 2-го рода, их свойства и вычисление. Связь криволинейных интегралов 1-го и 2-го рода, их применения.

Векторное поле. Циркуляция векторного поля. Формула Грина.

Площадь поверхности. Поверхностный интеграл 1-го рода, его свойства и вычисление.

Ориентация поверхности. Поток векторного поля. Поверхностный интеграл 2-го рода, его свойства и вычисление. Связь поверхностных интегралов 1-го и 2-го рода.

Формула Остроградского. Дивергенция векторного поля, ее свойства и инвариантное определение.

Формула Стокса. Ротор векторного поля, его свойства и инвариантное определение.

Оператор Гамильтона, его свойства. Потенциальные векторные поля, условия потенциальности. Условия независимости криволинейного интеграла 2-го рода от пути интегрирования. Соленоидальные и гармонические векторные поля.

РЯДЫ

Числовые ряды. Сходимость и сумма ряда. Бесконечная геометрическая прогрессия. Линейные операции над рядами, их свойства. Остаток ряда, необходимое условие сходимости ряда. Критерий Коши сходимости числового ряда (без доказательства).

Ряды с положительными членами, критерий сходимости. Признаки сравнения.

Признаки сходимости Даламбера и Коши (радикальный и интегральный).

Знакочередующиеся ряды. Признак Лейбница. Оценка остатка ряда. Абсолютная и условная сходимость числовых рядов.

Функциональные ряды, поточечная и равномерная сходимость. Критерий Коши. Область сходимости. Достаточный признак Вейерштрасса равномерной сходимости.

Непрерывность суммы равномерно сходящегося ряда. Почленное дифференцирование и интегрирование функциональных рядов.

Степенные ряды. Радиус сходимости степенного ряда. Теорема Абеля. Непрерывность суммы, дифференцирование и интегрирование степенного ряда.

Разложение функции в степенной ряд. Ряд Тейлора, условие его сходимости к исходной функции. Теорема о единственности разложения функции в степенной ряд. Разложение в ряды Тейлора и Маклорена простейших функций.

Применение степенных рядов для приближенных вычислений и для решения дифференциальных уравнений. Понятие о функциях Бесселя.

Тригонометрические ряды Фурье. Коэффициенты Фурье. Теорема Дирихле (без доказательства).

Разложения в ряд Фурье четных и нечетных функций. Разложение периодических функций.

Ряд Фурье в комплексной форме. Интеграл Фурье.

Скалярное произведение функций. Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Сходимость в среднем квадратичном. Полные системы функций.

ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

Оригинал и изображение по Лапласу. Свойства преобразования Лапласа. Теоремы подобия, смещения, запаздывания дифференцировании изображения.

Изображение периодических функций. Таблица оригиналов и изображений. Формулы обращения для рациональных функций. Свертка и ее свойства. Изображение свертки.

Дифференцирование и интегрирование оригинала. Применение преобразования Лапласа к решению дифференциальных уравнений и систем.

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Уравнения в частных производных, основные определения. Три класса уравнений. Постановка краевых задач для уравнения теплопроводности, уравнения Лапласа и волнового уравнения.

Метод Фурье решения краевых задач для уравнения теплопроводности.

Распространение тепла в пространстве. Решение задачи Дирихле для уравнения Лапласа для простейших областей.

Решение краевых задач для волнового уравнения.

ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

Примеры задач вариационного исчисления. Функционал и его вариация.

Необходимые условия экстремума функционала. Уравнение Эйлера. Случаи интегрируемости уравнения Эйлера.

Задачи на условный экстремум функционала. Изопериметрическая задача.

Экстремумы функционала от функции нескольких переменных. Уравнение Эйлера-Пуассона.

4 СЕМЕСТР

Лекции – 34 часа, практические занятия – 51 часа.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Опыт, события, частота. Свойства частот. Устойчивость частоты случайного события. Построение математической модели случайного опыта: пространство элементарных событий, события в модели. Алгебра событий. Поле событий.

Аксиомы теории вероятностей. Следствия из аксиом (в частности, теорема сложения для несовместных событий). Примеры вероятностных моделей. Геометрическая вероятность. Классическая вероятность. Элементы комбинаторики. Примеры задач на классическую вероятность.

Условная вероятность. Теорема умножения вероятностей. Независимые события. Формула полной вероятности. Формулы Байеса.

Схема независимых испытаний (схема Бернулли). Формулы Бернулли. Наивероятнейшее число "успехов" в n независимых испытаниях.

Дискретная случайная величина. Распределение случайной величины. Функция распределения. Свойства функции распределения. Биноминальное распределение. Распределение Пуассона. Числовые характеристики: математическое ожидание, дисперсия, среднеквадратичное отклонение.

Непрерывная случайная величина. Плотность вероятностей, функция распределения. Равномерное распределение, показательное распределение, нормальное распределение. Числовые характеристики непрерывных величин. Вероятность попадания в интервал. Правило трех сигм. Теоремы Муавра-Лапласа.

Функция случайной величины. Функция распределения функции случайной величины, плотность вероятностей. Система случайных величин (случайный вектор) – на примере двух случайных величин. Функция распределения случайного вектора, частные функции распределения. Независимые случайные величины. Распределение χ-квадрат, распределение Стьюдента, распределение Фишера.

Числовые характеристики системы случайных величин, ковариация, коэффициент корреляции 2-х случайных величин. Свойства математических ожиданий и дисперсии.

Последовательность случайных величин, сходимость по вероятности. Закон больших чисел. Неравенство Чебышева. Теоремы Чебышева и Бернулли. Центральная предельная теорема Ляпунова.

ЧИСЛЕННЫЕ МЕТОДЫ

Элементы теории погрешностей. Вычислительная погрешность. Неустранимая погрешность. Прямая задача погрешности. Погрешность округлений и запись чисел в ЭВМ.

Численные методы решения системы линейных алгебраических уравнений. Метод Гаусса. Метод Гаусса-Жордана. Метод прогонки. Метод итераций. Метод Зейделя.

Решение нелинейных уравнений. Отделение корней. Метод деления отрезка пополам. Метод Ньютона (касательных). Метод простой итерации

Интерполирование. Постановка задачи интерполирования. Интерполяционная формула Лагранжа. Конечные разности. Интерполяционные формулы Ньютона. Сплайн-интерполяции.

Эмпирические формулы. Метод средних. Метод наименьших квадратов

Численное дифференцирование. Вычисление производной по ее определению. Конечно-разностные аппроксимации производных

Формулы численного дифференцирования с использованием интерполяционных многочленов Лагранжа.

Численное интегрирование. Основные понятия о численном интегрировании. Формулы прямоугольников. Формула трапеций. Формула Смпсона.

Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. Постановка задачи. Метод Эйлера. Метод Эйлера-Коши. Метод Рунге-Кутта.

Численные методы безусловной оптимизации функции одной переменой. Основные понятия об оптимизации. Метод сканирования. Метод половинного деления. Метод золотого сечения. Метод Фибоначчи. Метод Ньютона.
Численные методы поиска минимума функции нескольких переменных. Основные понятия и определения. Метод покоординатного спуска. Метод скорейшего спуска.
Линейное программирование. Постановка задачи. Геометрический метод решения задач линейного программирования. Симплекс метод решения задач линейного программирования

5. РАСЧЕТНО-ГРАФИЧЕСКИЕ РАБОТЫ

В каждом семестре кроме подготовки к лекциям и практическим занятиям студент должен выполнить две домашние расчетно-графические работы по высшей математике. Выполнение этих заданий должно способствовать овладению студентами навыками самостоятельной работы и реализации индивидуального творческого мышления по основным темам курса "Высшая математика". Каждая работа содержит теоретические упражнения и расчетную часть – задачи. Теоретические упражнения являются общими для всех студентов, задачи для каждого студента группы – индивидуальны.

Контроль за выполнением домашних контрольных работ проводится в два этапа.

  1. Предварительная проверка правильности письменного решения теоретических упражнений и задач;

  2. Защита расчетно-графической работы (возможна в двух вариантах, устном или письменном).

6. Учебно-методическое обеспечение дисциплины.

6.1. Рекомендуемая литература.

а) основная литература (учебники и учебные пособия после 1995 г. выпуска):

  1. Зубков В.Г., Ляховский В.А., Мартыненко А.И., Миносцев В.Б., КУРС ВЫСШЕЙ МАТЕМАТИКИ, под ред. В.Б. Миносцева, Части 1, 2, М.: 2000.

  2. ВЫСШАЯ МАТЕМАТИКА ДЛЯ ЭКОНОМИСТОВ / Под ред. Н.Ш. Кремера. – М.: «Банки и биржи», 1998

  3. Гмурман В. Е. Теория вероятностей и математическая статистика. М., Высш. школа, 1998.

  4. Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике. М., Высш. школа, 1998.

  5. Кузнецов Л. А. Сборник заданий по высшей математике. М., Высш. школа, 1997.

  6. Данко П.Е., , Попов А.Г., , Кожевникова Т.Я. ВЫСШАЯ МАТЕМАТИКА в упражнениях и задачах, М.: «Высшая школа», 1999.

  7. Плис А.И., Сливина Н.А. MATHCAD: математический практикум для экономистов и инженеров, М.: «Финансы и статистика», 1999

б) дополнительная литература (литература до 1995 г. выпуска):

  1. Пискунов ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

  2. Сборник задач по математике для втузов. Часть 1. Линейная алгебра и основы математического анализа (под ред. А. В. Ефимова, Б. П. Демидовича). М., Наука, 1981.

  3. Сборник задач по математике для втузов. Часть 2. Специальные разделы мате матического анализа (под ред. А. В. Ефимова, Б. П. Демидовича). М., Наука, 1981.

  4. Сборник задач по математике для втузов. Часть 3. Теория вероятностей и мате матическая статистика (под ред. А. В. Ефимова). М., Наука, 1990.

  5. Сборник задач по математике для втузов. Часть 4. Методы оптимизации. Уравнения в частных производных. Интегральные уравнения (под ред. А. В. Ефимова). М., Наука, 1990.

  6. Краснов М. Л, Киселев А. И, Макаренко Г. И. Функции комплексного переменного. Операционное исчисление. М., Наука, 1981.

  7. Чудесенко В. Ф. Сборник задач по специальным курсам высшей математики. М., Высш. школа, 1983.

  8. Краснов М. Л, Киселев А. И, Макаренко Г. И. Сборник задач по обыкновенным дифференциальным уравнениям. М., Высш. школа, 1978.

  9. Бугров Я. С. , Никольский С. М. Элементы линейной алгебры и аналитической геометрии. М., Наука, 1988.

  10. Бугров Я. С., Никольский С. М. Дифференциальное и интегральное исчисление. М., Наука, 1988.

  11. Бугров Я. С., Никольский С. М. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного. М., Наука, 1985.

  12. Клетеник Д. В. Сборник задач по аналитической геометрии. М., Наука, 1984.

  13. Берман Г. И. Сборник задач по курсу математического анализа. М., Наука, 1985.

  14. Джонсон Н., Лион Ф. СТАТИСТИКА И ПЛАНИРОВАНИЕ ЭКСПЕРИМЕНТА В ТЕХНИКЕ И НАУКЕ методы обработки данных, том 1 и 2, М.: «МИР», 1980.

  15. Д. Финни. "Введение в теорию планирования экспериментов". М.: Наука, 1970, 288с.

  16. Ю.В. Линник. "Метод наименьших квадратов и основы теории обработки наблюдений". М.: Физматгиз, 1962, 362с.

  17. Д. Худсон. "Статистика для физиков". М.: Мир, 1970, 296.

6.2. Средства обеспечения освоения дисциплины.

Методические пособия, изданные кафедрой «Высшая и прикладная математика» в издательском комплексе МГУПП:

  1. Бордаков Г.А., Сердобольская Н.Л., Тимохина А.О.. Теория вероятностей и математической статистики, 1997.

  2. Марьямов А.Н. Методы оптимизации, 1997.

  3. Лифшиц М.И. Вероятности случайных событий, 1997.

  4. Калинин В.В. Дифференциальные уравнения, 1997.

  5. Галушкина Ю.И., Марьямов А.Н., Математическая статистика, 1998.

  6. Галушкина Ю.И., Марьямов А.Н. Основы теории вероятностей, 1998.

  7. Угрозов В.В., Тимохина А.О. Линейное программирование, 1999.

  8. Угрозов В.В., Тимохина А.О. Траспортная задача, 1999.

  9. Жданов В.Г. Функции двух переменных, 1999.

  10. Филиппов А.Н., Филиппов С.А. Элементарная теория матриц, 1999.

  11. Тимохина А.О., Иванов В.И. Неопределенный интеграл, 2000.

  12. Васин С.И. Вычисление производных функций. 2000.

  13. Угрозов В.В., Тимохина А.О. Случайные события. 2000.

  14. Васин С.И., Иванов В.И., Орешкин О.Ф. Аналитическая геометрия. 2001.

  15. Ракитин В.И., Тимохина А.О., Угрозов В.В. Случайные величины. 2001

  16. Васин С.И., Орешкин О.Ф. Основы линейной алгебры. 2001

  1. Методические рекомендации по организации изучения дисциплины.

Программа составлена в соответствии с Примерной учебной программой, рекомендованной Министерством образования РФ для подготовки дипломированных специалистов по направлениям:

653300 – Эксплуатация наземного транспорта и транспортного

оборудования

Специальность 230100 – Эксплуатация и обслуживание транспортных и

технологических машин и оборудования (в пищевой промышленности)

655800 – Пищевая инженерия

Специальность 271300 – Пищевая инженерия малых предприятий

Специальность 170600 – Машины и аппараты пищевых производств

Специальность 551800 – Технологические машины и оборудования

657900 – Автоматизированные технологии и производства

Специальность 210200 – Автоматизация технологических процессов

и производств (в пищевой промышленности)

656900 – Технология полиграфического и упаковочного производства

Специальность 072500 – Технология и дизайн упаковочного производства

651900 – Автоматизация и управление

Специальность 210100 – Управление и информатика в технических системах

650800 – Теплоэнергетика

Специальность 100800 – Энергетика теплотехнологий

Специальность 550900 – Теплоэнергетика

656500 – Безопасность жизнедеятельности

Специальность 330500 – Безопасность технологических процессов

и производств.

Программу составил доцент кафедры «Высшей и прикладной математики» В.И. Ракитин .

Программа рассмотрена на заседании кафедры «Высшей и прикладной математики» 5 апреля 2002 г., протокол №8,

заведующий кафедрой, профессор А.Н. Филиппов

Программа утверждена на заседании НМС института ИОАИТ,

« » апреля 2002 г., протокол № .

Председатель НМС института ИОАИТ,

доцент Ю. Ф. Белокрылов

Директор института ИОАИТ,

профессор А. П. Щеренко

1

Смотреть полностью


Скачать документ

Похожие документы:

  1. Государственный образовательный стандарт высшего профессионального образования направление подготовки дипломированного специалиста (13)

    Образовательный стандарт
    Нормативный срок освоения основной образовательной программы подготовки по направлению подготовки дипломированного специалиста 653300 - «Эксплуатация наземного транспорта и транспортного оборудования» при очной форме обучения 5 лет.
  2. Государственный образовательный стандарт высшего профессионального образования направление подготовки дипломированного специалиста (9)

    Образовательный стандарт
    Нормативный срок освоения основной образовательной программы подготовки инженера по направлению подготовки дипломированного специалиста “Эксплуатация транспорта и транспортного оборудования” при очной форме обучения 5 лет.
  3. Государственный образовательный стандарт высшего профессионального образования направление подготовки дипломированного специалиста (32)

    Образовательный стандарт
    Нормативный срок освоения основной образовательной программы подготовки инженера по направлению подготовки дипломированного специалиста «Эксплуатация транспорта и транспортного оборудования» при очной форме обучения 5 лет.
  4. Федеральное агентство по образованию (6)

    Справочник
    История первого в Прикамье технического вуза началась в послевоенные годы, когда возникла острая необходимость в подготовке высококвалифицированных кадров для промышленности Западного Урала.
  5. Примерная программа дисциплины теплотехника рекомендуется Минобразованием России для направлений подготовки (специальностей) в области техники и технологии

    Примерная программа
    Одним из основных направлений развития материального производства на современном этапе является надежное обеспечение его отраслей энергетическими ресурсами.

Другие похожие документы..