Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Напряжение на выводах аккумуляторной батареи при выключенных потребителях больше 12 В, но при включении стартера падает ниже 6-8 В. При этом из-под к...полностью>>
'Документ'
Универсальная библиотека. Ч. 423. 10 к. Иван Франко. К свету! На промыслах. Перевод с украинского Г. Войташевского и М. Новиковой. Книгоиздательство ...полностью>>
'Лекция'
Собственно тайга, то есть территории, которые однозначно рассматриваются большинством авторов в составе таежной зоны, также может быть подразделена н...полностью>>
'Книга'
Заметный подъем в науке о русской литературе, которым отмечены последние два-три десятилетия, связан с пересмотром основных представлений о самом сос...полностью>>

Методичка №47 : Фармация Физиология «жкт»

Главная > Методичка
Сохрани ссылку в одной из сетей:

МИМСР

Методичка №47 : Фармация

Физиология «ЖКТ»

Болезни Желудка

Антациды и адсорбенты

Противоязвенные средства

Средства, влияющие на вегетативную нервную систему

Адренергические средства

H2-антигистаминные средства

Ингибиторы протонного насоса

МИМСР

Лекция и статьи : Биоэлементы в косметологии.

Биоэлементы в Диетологии.

Методичка № 1

МИМСР

Лекция и статьи : Биоэлементы в косметологии.

Биоэлементы в Диетологии.

Методичка № 2

МИМСР

Лекции и статьи : Физиология человека.

Часть №1

Биосинтез белка
Любая живая клетка способна синтезировать белки, и эта способность представляет одно из наиболее важных и характерных ее свойств. С особенной энергией идет биосинтез белков в период роста и развития клеток. В это время активно синтезируются белки для построения клеточных органоидов, мембран. Синтезируются ферменты. Биосинтез белков идет интенсивно и во многих взрослых, т. е. закончивших рост и развитие, клетках, например в клетках пищеварительных желез, синтезирующих белки-ферменты (пепсин, трипсин), или в клетках желез внутренней секреции, синтезирующих белки-гормоны (инсулин, тироксин). Способность к синтезу белков присуща не только растущим или секреторным клеткам: любая клетка в течение всей жизни постоянно синтезирует белки, так как в ходе нормальной жизнедеятельности молекулы белков постепенно денатурируются, структура и функции их нарушаются. Такие пришедшие в негодность молекулы белков удаляются из клетки. Взамен синтезируются новые полноценные молекулы, в результате состав и деятельность клетки не нарушаются. Способность к синтезу белка передается по наследству от клетки к клетке и сохраняется ею в течение всей жизни.
Основная роль в определении структуры белков принадлежит ДНК. Сами ДНК непосредственного участия в синтезе не принимают. ДНК содержится в ядре клетки, а синтез белков происходит в рибосомах, находящихся в цитоплазме. В ДНК только содержится и хранится информация о структуре белков.
На длинной нити ДНК следует одна за другой запись информации о составе первичных структур разных белков. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК представляет собрание нескольких сот генов.
Чтобы разобраться в том, каким образом структура ДНК определяет структуру белка, приведем такой пример. Многие знают об азбуке Морзе, при помощи которой передают сигналы и телеграммы. По азбуке Морзе все буквы алфавита обозначены сочетаниями коротких и длинных сигналов - точкам и тире. Буква А обозначается .--, Б -- --. и т. д. Собрание условных обозначений называют кодом или шифром. Азбука Морзе представляет собой пример кода. Получив телеграфную ленту с точками и тире, знающий код Морзе легко расшифрует написанное.
Макромолекула ДНК, состоящая из нескольких тысяч последовательно расположенных четырех видов нуклеотидов, представляет собой код, определяющий структуру ряда молекул белка. Так же как в коде Морзе каждой букве соответствует определенное сочетание точек и тире, так и в коде ДНК каждой аминокислоте соответствует определенное сочетание точек и тире, так и в коде ДНК каждой аминокислоте соответствует определенное сочетание последовательно связанных нуклеотидов.
Код ДНК удалось расшифровать почти полностью. Сущность кода ДНК состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом состоящих нуклеотидов. Например, участок Т-Т-Т соответствует аминокислоте лизину, отрезок А-Ц-А - цистеину, Ц-А-А - валину и. т. д. Допустим, что в гене нуклеотиды следуют в таком порядке:
А-Ц-А-Т-Т-Т-А-А-Ц-Ц-А-А-Г-Г-Г
Разбив этот ряд на тройки (триплеты), мы сразу расшифруем, какие аминокислоты и в каком порядке следуют в молекуле белка: А-Ц-А - цистеин; Т-Т-Т - лизин; А-А-Ц - лейцин; Ц-А-А - валин; Г-Г-Г - пролин. В коде Морзе всего два знака. Для обозначения всех букв, всех цифр и знаков препинания приходится брать на некоторые буквы или цифры до 5 знаков. Код ДНК проще. Разных нуклеотидов 4. Число возможных комбинаций из 4 элементов по 3 равно 64. Разных аминокислот всего 20. Таким образом, различных триплетов нуклеотидов с избытком хватает для кодирования всех аминокислот.
Транскрипция. Для синтеза белка в рибосомы должна быть доставлена программа синтеза, т. е. информация о структуре белка, записанная и хранящаяся в ДНК. Для синтеза белка в рибосомы направляются точные копии этой информации. Это осуществляется с помощью РНК, которые синтезируются на ДНК и точно копируют ее структуру. Последовательность нуклеотидов РНК точно повторяет последовательность в одной из цепей гена. Таким образом, информация, содержащаяся в структуре данного гена, как бы переписывается на РНК. Этот процесс называют транскрипцией (лат. "транскрипция" - переписывание). С каждого гена можно снять любое число копий РНК. Эти РНК, несущие в рибосомы информацию о составе белков, называют информационными (и-РНК).
Для того чтобы понять, каким образом состав и последовательность расположения нуклеотидов в гене могут быть "переписаны" на РНК, вспомним принцип комплементарности, на основании которого построена двухспиральная молекула ДНК. Нуклеотиды одной цепи обусловливают характер противолежащих нуклеотидов другой цепи. Если на одной цепи находится А, то на том же уровне другой цепи стоит Т, а против Г всегда находится Ц. Других комбинаций не бывает. Принцип комплементарности действует и при синтезе информационной РНК.
Против каждого нуклеотида одной из цепей ДНК встает комплементарный к нему нуклеотид информационной РНК (в РНК вместо тимидилового нуклеотида (Т) присутствует уридиловый нуклеотид (У)). Таким образом, против Г днк встает Ц рнк, против А днк - У рнк, против Т днк - А рнк. В результате образующаяся цепочка РНК по составу и последовательности своих нуклеотидов представляет собой точную копию состава и последовательности нуклеотидов одной из цепей ДНК. Молекулы информационной РНК направляются к месту, где происходит синтез белка, т. е. к рибосомам. Туда же идет из цитоплазмы поток материала, из которого строится белок, т. е. аминокислоты. В цитоплазме клеток всегда имеются аминокислоты, образующиеся в результате расщепления белков пищи.
Транспортные РНК. Аминокислоты попадают в рибосому не самостоятельно, а в сопровождении транспортных РНК (т-РНК). Молекулы т-РНК невелики - они состоят всего из 70-80 нуклеотидных звеньев. Их состав и последовательность для некоторых т-РНК уже установлены полностью. При этом выяснилось, что в ряде мест цепочки т-РНК обнаруживаются 4-7 нуклеотидных звеньев, комплементарных друг другу. Наличие комплементарных последовательностей в молекуле приводит к тому, что эти участки при достаточном сближении слипаются друг с другом благодаря образованию водородных связей между комплементарными нуклеотидами. В результате возникает сложная петлистая структура, напоминающая по форме листок клевера. К одному из концов молекулы т-РНК присоединяется аминокислота (Д), а в верхушке "листка клевера" находится триплет нуклеотидов (Е), который соответствует по коду данной аминокислоте. Так как существует не менее 20 различных аминокислот, то, очевидно, имеется не менее 20 различных т-РНК: на каждую аминокислоту - своя т-РНК.
Реакция матричного синтеза. В живых системах мы встречаемся с новым типом реакций, наподобие редупликации ДНК, или реакцией синтеза РНК. Такие реакции неизвестны в неживой природе. Их называют реакциями матричного синтеза.
Термином "матрица" в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул. Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах. Здесь происходит направленное стягивание мономеров в определенное место клетки - на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.
Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК. Мономерные молекулы, из которых синтезируется полимер, - нуклеотиды или аминокислоты - в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке. Затем происходит "сшивание" мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы. После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.
Матричный тип реакций - специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого - его способности к воспроизведению себе подобного.
Трансляция. Информация о структуре белка, записанная в и-РНК в виде последовательности нуклеотидов, переносится далее в виде последовательности аминокислот в синтезируемой полипептидной цепи. Этот процесс называют трансляцией. По мере сборки белковой молекулы рибосома ползет по и-РНК. Когда рибосома продвинется вперед на 50-100 А, с того же конца на и-РНК входит вторая рибосома, которая, как и первая, начинает синтез и движется вслед за первой рибосомой. Затем на и-РНК вступает третья рибосома, четвертая и т. д. Все они выполняют одну и ту же работу: каждая синтезирует один и тот же белок, запрограммированный на данной и-РНК. Чем дальше вправо продвинулась рибосома по и-РНК, тем больший отрезок белковой молекулы "собран". Когда рибосома достигает правого конца и-РНК, синтез окончен. Рибосома с образовавшимся белком сходит с и-РНК. Затем они расходятся: рибосома - на любую и-РНК (так как она способна к синтезу любого белка; характер белка зависит от матрицы), белковая молекула - в эндоплазматическую сеть и по ней перемещается в тот участок клетки, где требуется данный вид белка. Через короткое время заканчивает работу вторая рибосома, затем третья и т. д. А с левого конца и-РНК на нее вступают все новые и новые рибосомы, и синтез белка идет непрерывно. Число рибосом, умещающихся одновременно на молекуле и-РНК, зависит от длины и-РНК. Так, на молекуле и-РНК, которая программирует синтез белка гемоглобина и длина которой около 1500 А, помещается до пяти рибосом (диаметр рибосомы приблизительно равен 230 А). Группу рибосом, помещающуюся одновременно на одной молекуле и-РНК, называют полирибосомой.
Теперь остановимся подробнее на механизме работы рибосомы. Рибосома во время движения по и-РНК в каждый данный момент находится в контакте с небольшим учаством ее молекулы. Возможно, размер этого участка составляет всего один триплет нуклеотидов. Рибосома передвигается по и-РНК не плавно, а прерывисто, "шажками", триплет за триплетом. На некотором расстоянии от места контакта рибосомы с и-РНК находится пункт "сборки" белка: здесь помещается и работает фермент белок-синтетаза, создающий полипептидную цепь, т. е. образующий пептидные связи между аминокислотами.
Сам механизм "сборки" белковой молекулы в рибосомах осуществляется следующим образом. В каждую рибосому, входящую в состав полирибосомы, т. е. движущуюся по и-РНК, из окружающей среды непрерывным потоком идут молекулы т-РНК с "навешанными" на них аминокислотами. Они проходят, задевая своим кодовым концом место контакта рибосомы с и-РНК, который в данный момент находится в рибосоме. Противоположный конец т-РНК (несущий аминокислоту) оказывается при этом вблизи пункта "сборки" белка. Однако только в том случае, если кодовый триплет т-РНК окажется комплементарным к триплету и-РНК (находящемуся в данный момент в рибосоме), аминокислота, доставленная т-РНК, попадет в состав молекулы белка и отделится от т-РНК. Тотчас же рибосома делает "шаг" вперед по и-РНК на один триплет, а свободная т-РНК выбрасывается из рибосомы в окружающую среду. Здесь она захватывает новую молекулу аминокислоты и несет ее в любую из работающих рибосом. Так постепенно, триплет за триплетом, движется по и-РНК рибосома и растет звено за звеном - полипептидная цепь. Так работает рибосома - этот органоид клетки, который с полным правом называют "молекулярным автоматом" синтеза белка.
В лабораторных условиях искусственный синтез белка требует огромных усилий, много времени и средств. А в живой клетке синтез одной молекулы белка завершается в 1-2 мин.
Роль ферментов в биосинтезе белка. Не следует забывать, что ни один шаг в процессе синтеза белка не идет без участия ферментов. Все реакции белкового синтеза катализируются специальными ферментами. Синтез и-РНК ведет фермент, который "ползет вдоль молекулы ДНК от начала гена до его конца и оставляет позади себя готовую молекулу и-РНК. Ген в этом процессе дает только программу для синтеза, а сам процесс осуществляет фермент. Без участия ферментов не происходит и соединения аминокислот с т-РНК. Существуют особые ферменты, обеспечивающие захват и соединение аминокислот с их т-РНК. Наконец, в рибосоме в процессе сборки белка работает фермент, сцепляющий аминокислоты между собой.
Энергетика биосинтеза белка. Еще одной очень важной стороной биосинтеза белка является его энергетика. Любой синтетический процесс представляет собой эндотермическую реакцию и, следовательно, нуждается в затрате энергии. Биосинтез белка представляет цепь синтетических реакций: 1) синтез и-РНК; 2) соединение аминокислот с т-РНК; 3) "сборку белка". Все эти реакции требуют энергетических затрат. Энергия для синтеза белка доставляется реакцией расщепления АТФ. Каждое звено биосинтеза всегда сопряжено с распадом АТФ.
Компактность биологической организации. При изучении роли ДНК выяснилось, что явление записи, хранения и передачи наследственной информации осуществляется на уровне молекулярных структур. Благодаря этому достигается поразительная компактность "рабочих механизмов", величайшая экономичность их размещения в пространстве. Известно, что содержание ДНК в одном сперматозоиде человека равно 3.3x10 -12 степени г. ДНК содержит всю информацию, определяющую развитие человека. Подсчитано, что все оплодотворенные яйцеклетки, из которых развились все люди, живущие ныне на Земле, содержат столько ДНК, сколько ее умещается в объеме булавочной головки.

Авторегуляция химической активности клетки

Любой клетке, как и всякой живой системе, присуща способность сохранять свой состав и все свои свойства на относительно постоянном уровне. Так, например, содержание АТФ в клетках составляет около 0. 04%, и эта величина стойко удерживается, несмотря на то, что АТФ постоянно расходуется в клетке в процессе жизнедеятельности. Другой пример. Реакция клеточного содержимого слабощелочная, и эта реакция устойчиво удерживается, несмотря на то что в процессе обмена веществ постоянно образуются кислоты и основания. Стойко удерживается на определенном уровне не только химический состав клетки, но и другие ее свойства. Высокую устойчивость живых систем нельзя объяснить свойствами материалов, из которых они состоят, так как белки, жиры и углеводы обладают незначительной устойчивостью. Устойчивость живых систем активна, она обусловлена сложными процессами координации и регуляции.
Рассмотрим, например, каким образом поддерживается постоянство содержания АТФ в клетке. АТФ расходуется клеткой при осуществлении ею какой-либо деятельности. Синтез АТФ происходит в результате процессов бескислородного и кислородного расщепления глюкозы. Очевидно, постоянство содержания АТФ достигается благодаря точному уравновешиванию обоих процессов - расхода АТФ и ее синтеза. При снижении количества АТФ в клетке включаются процессы бескислородного и кислородного расщепления глюкозы, в ходе которых АТФ синтезируется. Когда уровень АТФ достигнет нормы, синтез АТФ притормаживается.
Включение и выключение процессов, обеспечивающих поддержание нормального состава клетки, происходит в ней автоматически. Такую регуляцию называют саморегуляцией или авторегуляцией.
Основой регуляции деятельности клетки являются процессы информации, т. е. сигналы. Сигналом служит изменение, возникающее в каком-нибудь звене системы. В ответ на сигнал включается процесс, в результате которого возникшее изменение устраняется. Когда нормальное состояние системы восстановлено - это служит новым сигналом для выключения процесса.
Понижение содержания АТФ в клетке представляет сигнал, включающий процесс синтеза АТФ. Когда концентрация АТФ достигнет нормы - это новый сигнал, приводящий к выключению синтеза АТФ.
По своему механизму сигнализация в клетке носит химический характер: сигналом служит химическое вещество - появление его или изменение его концентрации.
Прием сигналов, передача их и ответные реакции на сигнализацию осуществляются ферментами.

ОБМЕН БЕЛКОВ


БЕЛКИ - сложные вещества - полимеры, состоящие из аминокислот, связанных между собой пептидной связью.
Функции белков:

  1. Основной строительный материал в организме.

  2. Являются переносчиками витаминов, гормонов, жирных кислот и др. веществ.

  3. Обеспечивает нормальное функционировании иммунной системы.

  4. Обеспечивает состояние "аппарата наследственности".

  5. Являются катализаторами всех биохимических метаболических реакций организма.

Организм человека в нормальных условиях (в условиях, когда нет необходимости пополнения дефицита ами- нокислот за счет распада сывороточных и клеточных белков) практически лишен резервов белка (мобилизу- емый резерв - 45г : 40г в мыщцах, 5г в крови и печени), поэтому единственным источником пополнения фонда аминокислот, из которых синтезируются белки организма, могут служить только белки пищи.
Различают заменимые аминокислоты (синтезируются в организме) и незаменимые аминокислоты (не могут синтезироваться в организме, а поэтому должны поступать в организм в пищей). К незаменимым амино- кислотам относятся: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин.
Недостаток незаменимых аминокислот в пище приводит к нарушениям белкового обмена.
Кроме основной функции белков - белки как пластический материал, он может использоваться и как источник энергии при недостатке других веществ (углеводов и жиров). При окислении 1 г белка освобождается около 4,1 ккал.
Поступая в организм с пищей белки окончательно расщепляются в ки-шечнике до аминокислот, всасываются в кровь и транспортируется в печень. Из печени аминокислоты поступают в ткани, где и используются в основ- ном для синтеза белков. Конечными продуктами метаболизма белков является аммиак, мочевина, мочевая кис- лота. Они выводятся из организма почками и частично потовыми железами.
При избыточном поступлении белков в организм, превышающем потреб-ность, они могут превращаться в углеводы и жиры. Избыточное потребление белка вызывают перегрузку работы печени и почек, участвующих в обезвреживании и элиминации их метаболитов. Повышается риск формирования аллергических реакций. Уси- ливаются процессы гниения в кишечнике - расстройство пищеварения в кишечнике.
Дефицит белка в пище приводит к явлениям белкового голодания - истощению, дистрофии внутренних орга- нов, голодные отеки, апатия, снижению резистентности организма к действию повреждающих факторов внеш- ней среды, мышечной слабости, нарушении функции центральной и периферической нервной системы, нару- шению ОМЦ, нарушение развития у детей.
Суточная потребность в белках - 1 г/кг веса при условии достаточного содержания незаменимых аминокислот (например, при приеме около 30 г животного белка), старики и дети - 1,2-1,5 г/кг, при тяжелой работе, росте мышц - 2 г/кг.
Большую роль в обмене белков играет азот. Азот является обязательной составной частью белка и продуктов его расщепления. Азот поступает в организм только с белковой пищей. Белки содержат в среднем 16% азота.
Азотистым балансом называется разность между количеством азота поступившего в организм и количест- вом азота выведенного из организма. Различают: азотистое равновесие, положительный и отрицательный азо- тистый баланс.
Для здорового в обычных условиях характерно азотистое равновесие. В период роста, во время беременности, при интенсивных физических нагрузках наблюдается (при росте мышечной массы) положительный азотистый баланс. Отрицательный азотистый баланс формируется при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Минеральный обмен


Минеральные вещества:

  1. Составляют 0,7 - 1,5% съедобной части продукта,

  2. Не обладают энергетической ценностью.

  3. Функции:

- пластическая (структурная - построение костной ткани),
- участвуют в углеводном, белковом и жировом обмене,
- участвуют в водно-солевом и кислотно-основном обменах,
- обеспечивают течение ферментативных реакций.

Макроэлементы
(содержатся в организме в большом количестве)

КАЛЬЦИЙ
Функции:
- составляет основу костной ткани и тканей зубов,
- принимает участие в работе ряда ферментов, гормонов,
- участвует в поддержании ионного гомеостаза,
- обеспечивает нормальную работу сердечно-сосудистой системы и нервно-мышечных процессов,
- придает стабильность клеточным мембранам и участвует в тканеобразовании
- необходим для нормальной возбудимости нервной ткани и сократимости мышц,
- является важнейшим компонентом свертывающей системы крови.
Источник:
Молоко, молочные продукты (творог, сыр), яичная скорлупа. Продукты тормо-зящие всасывание - фитиновые кислоты в злаковых, щавелевая в щавеле и шпи-нате, жиры, фосфаты (оптимальное для всасывание является соотношение каль-ция и фосфора 1:1).
Суточная потребность:
800-1000 мг.
Избыток:
Сердечно-сосудистая недостаточность, нарушения функций почек, сердца, аор-ты и других внутренних органов (кальциноз), нарушение функций желудочно-кишечного тракта (тошнота, рвота), астения, адинамия, депрессия.
Недостаток:
Повышенная нервно-мышечная возбудимость, тетанические судороги, сердечно- сосудистая недостаточность, снижение и утрата мышечного тонуса.

ФОСФОР
Функции:
- входит в состав костной ткани, белков, нуклеиновых кислот (ДНК, РНК),
- является компонентом мембран клеток
- участвует в обменен энергии (аденозинтрифосфат, креатинфосфат), является аккумулятором энергии,
- принимает участие в росте и делении клеток,
- участвует в образовании активных форм витаминов,
- поддерживает кислотно-щелочное равновесие,
- обеспечивает мышечную и умственную деятельность.
Источник:
Рыба, хлеб, мясо, молоко и молочные продукты, фасоль горох, перловая, овсяная крупа, сыр. Фосфор находится в трудноусваиваемой форме в растительных про-дуктах (в форме фитиновой кислоты).
Суточная потребность:
Около 1200-1500 мг. Соотношение фосфора и кальция 1,5 : 1.
Избыток:
Избыток фосфора приводит выделение кальция из костей.
Недостаток:
Слабость, адинамия.

МАГНИЙ
Функции:
- регулирует нервно-мышечную возбудимость,
- участвует в обмене углеводов, в энергетическом обмене
- принимает участие в формировании костной ткани.
Источник:
Овсяная крупа, орехи, горох, фасоль, ячневая крупа, хлеб.
Суточная потребность:
350-500 мг. Соотношение магния и кальция 0,7 : 1.
Избыток:
Угнетение дыхания, снижение артериального давления, угнетение функций центральной нервной системы.
Недостаток:
Апатия, депрессия, мышечная слабость, склонность к судорогам, нарушение функций сердечно-сосудистой системы.

НАТРИЙ
Функции:
- жизненно важный катион внеклеточной жидкости.
- участвует в поддержании нормального состояния буферных систем крови,
- регулирует артериальное давление,
- участвует в регуляции водно-солевого обмена,
- участвует в работе пищеварительных ферментов,
- принимает участие в обмене веществ,
- влияет на функциональную активность нервной и мышечной ткани,
- принимает участие в функционировании сердечно-сосудистой системы,
- участвует в регуляции кислотно-основного состояния.
Источник:
Поваренная соль (хлорид натрия).
Суточная потребность:
Около 10 г.
Избыток:
Задержка воды в организме, отеки, повышенная нагрузка (перегрузка) на нейро-эндокринную систему, почки.
Недостаток:
Повышенная утомляемость.

КАЛИЙ
Функции:
Основной внутриклеточный ион.
- Участвует в регуляции кислотно-основного состояния,
- обеспечивает нормальную работу сердечно-сосудистой системы,
- обеспечивает работу некоторых ферментов,
- обеспечивает передачу нервного импульса,
- является антагонистом натрия,
- обеспечивает нормальную мышечную активность.
Источник:
Бобовые, "картофель в мундире", яблоки, виноград, изюм, курага.
Суточная потребность:
2,7-5,9 г.
Избыток:
Нарушение фуьвции желудочно-кишечного тракта (тошнота., рвота), закисление крови (ацидоз), нарушение функции сердечно-сосудистой системы.
Недостаток:
Адинамия, мышечная слабость, сухость кожи, снижение кожной чувствительности, нарушение функции сердечно-сосудистой системы, снижение артериального и рост венозного давления, нарушение пищеварения (тошнота, рвота).

ХЛОР
Функции:
- важнейший анион внеклеточного пространства, изменение концентрации которого следует за изменением концентрации натрия,
- участвует в образовании желудочного сока,
- участвует в работе ряда ферментов.
Источник:
Хлеб, поваренная соль (хлорид натрия).
Суточная потребность:
2-4 г.
Избыток:
Клинически не определяется.
Недостаток:
Судороги.

СЕРА
Функции:
- входит в состав белков в виде серосодержащих аминокислот, некоторых гор-монов и витаминов.
Источник:
В основном животные продукты.
Суточная потребность:
Точно не определена.
Избыток:
Клинически не определяется.
Недостаток:
Клинически не определяется.

ЖЕЛЕЗО
Функции:
- участвует в образовании гемоглобина (нормальной структуре эритроцитов),
- определяет работу ряда ферментов,
- участвует в процессе переноса кислорода к тканям,
- участвует во внутриклеточных окислительных процессах.
Источник:
Печень, почки, бобовые (находятся в трудноусваиваемой форме, т.к. образует с железом труднорастворимые соли). Чай снижает усвоение железа (содержит дубильные вещества).
Суточная потребность:
12-15 мг.
Избыток:
Гемосидероз (избыточное накопление в тканях и органах соединений железа)
Недостаток:
Железодефицитная анемия.

Микроэлементы
(содержатся в организме в низких концентрациях)


МЕДЬ
Функции:
- участвует в построении ряда ферментов и белков,
- обеспечивает процессы биологического окисления, тканевого дыхания, выработки энергии,
- участвует в обмене железа,
- обеспечивает обмен биологически активных веществ и гормонов в организме.
Источник:
Печень, морские продукты, зернобобовые, гречневая и овсяная крупа, орехи.
Суточная потребность:
30 мкг/кг (2-2,5 мг).
Недостаток:
Анемия.
Избыток:
Поражение центральной нервной системы и печени.

ЦИНК
Функции:
- обеспечивает действие различных ферментов клеточного метаболизма,
- обеспечивает нормальный рост, развитие и половое созревание,
- участвует в процессе кроветворения и процессах регенерации,
- участвует в процессах синтеза белка и нуклеиновых кислот.
Источник:
Мясо, птица, твердые сыры, зернобобовые, крупы, креветки, орехи.
Суточная потребность:
10-22 мг.
Недостаток:
Замедление роста, в ряде случаев может привести к карликовости, задержке полового развития, нарушение вкуса, аппетита, обоняния, нарушение заживления ран.
Избыток:
Нарушение функций почек, язва желудка.

МАРГАНЕЦ
Функции:
- обеспечивает нормальный рост,
- поддерживает репродуктивную функцию, процесс образования костей,
- обеспечивает нормальный метаболизм соединительной ткани,
- участвует в регуляции углеводного и липидного обмена,
- является структурным компонентом некоторых ферментов,
- стимулирует биосинтез холестерина,
- участвует в процессе утилизации глюкозы клетками,
- участвует в процессе синтеза и метаболизма инсулина.
Источник:
Злаковые, бобовые, орехи, кофе, чай.
Суточная потребность:
5-10 мг.
Недостаток:
Снижение концентрации холестерина в организме, похудание, поражение кожи, тошнота, рвота.
Избыток:
Поражение центральной нервной системы, утомляемость, головная боль, снижение мышечного тонуса, дисфункция щитовидной железы, снижение функции половых желез и надпочечников.

ХРОМ
Функции:
- участвует в регуляции углеводного и липидного обменов, снижает количество глюкозы в крови,
- участвует в регуляции метаболизма холестерина (уменьшает концентрацию холестерина).
Источник:
Говяжья печень, мясо, птица, зернобобовые, перловая крупа, ржаная мука, дрожжи.
Суточная потребность:
200-250 мкг.
Недостаток:
Клинически не определяется.
Избыток:
Слабость, головная боль, бронхит, нарушение функций легких, гастрит.

ЙОД
Функции:
- участвует в образовании гормона щитовидной железы - тироксина,
- контролирует состояние энергетического обмена,
- обеспечивает нормальное физическое и психическое развитие,
- влияет на состояние центральной нервной системы, эмоций,
- обеспечивает работу печени, сердечно-сосудистой системы,
- влияет на водно-солевой, углеводный и липидный обмены,
- усиливает метаболические процессы в организме.
Источник:
Морские водоросли, морская рыба, мясо, молоко, йодированная поваренная соль.
Суточная потребность:
100-150 мкг.
Недостаток:
Нарушение синтеза тироксина и угнетение функции щитовидной железы (эндемический зоб).
Избыток:
Нарушение функций щитовидной железы.

ФТОР
Функции:
- участвует в костеобразовании и процессе образования зубов
Источник:
Рыба (треска, сом), орехи, печень, телятина, баранина, овсяная крупа, чай.
Суточная потребность:
2-3 мг.
Недостаток:
Разрушение зубов.
Избыток:
Поражение зубной эмали.



Скачать документ

Похожие документы:

  1. Мимср методичка №48 Фармация. Бапд. Диетология Биоэлементы. Ферменты. Лекарственные травы

    Методичка
    В медицинской практике используют В. с., содержащие один или несколько (так называемые поливитаминные препараты) витаминов. Наряду с этим широкое применение получили препараты, включающие коферментные формы некоторых витаминов (кокарбоксилаза,
  2. Мимср методичка №49 Фармация Диетология. Раздельное питание. Бапд. Белки. Диетология. Раздельное питание. Бапд. Белки

    Методичка
    Кто из нас не мечтает укрепить здоровье и продлить отпущенный природой срок жизни? Для этих целей вроде бы и выпускаются различные биологически активные добавки (БАДы).
  3. Минздравсоцразвития россии государственное образовательное учреждение высшего профессионального образования

    Документ
    Актуальные вопросы современной медицины: материалы 68-й итоговой научной конференции студентов (ДВГМУ, апрель, 2011). – Хабаровск: Издательство ГОУ ВПО Дальневосточный государственный медицинский университет, 2011 – 173 с.
  4. Рабочая программа учебной дисциплины для специальности: 060108 "Фармация" Факультет: фармацевтический Кафедра: клинической фармакологии и интенсивной терапии

    Рабочая программа
    Рабочая программа составлена в соответствии с Государственными образовательными стандартами по соответствующим специальностям высшего профессионального медицинского и фармацевтического образования.
  5. Рабочая программа Для специальности: 060108 «Фармация» Факультет

    Рабочая программа
    Кафедра: клинической фармакологии и интенсивной терапии с курсами клинической фармакологии ФУВ, клинической аллергологии ФУВ, восстановительной терапии и курортологии ФУВ

Другие похожие документы..