Поиск

Полнотекстовый поиск:
Где искать:
везде
только в названии
только в тексте
Выводить:
описание
слова в тексте
только заголовок

Рекомендуем ознакомиться

'Документ'
Харківський професійний ліцей швейних технологій (далі — навчальний заклад), що діє на підставі статуту (положення), з одного боку, в особі директора...полностью>>
'Документ'
В народной пословице говорится: «Каждая наука - к мудрости ступенька». А моя бабушка любит повторять: «Каждая наука - ступенька к Богу». Приезжает к ...полностью>>
'Документ'
Упрощенная система налогообложения (сокращенно УСН) также вошла в деловой оборот под названием «упрощенка». «Упрощенка» достаточно популярна в наше вр...полностью>>
'Документ'
Качлик Чехия сказка 91 9 Золотой гусь 19 4 З. Хартман ДЕФА, ГДР сказка 5 10 Как выйти замуж за короля 19 9 Р. Симон ДЕФА, ГДР сказка 77 11 Как завоев...полностью>>

Главная > Реферат

Сохрани ссылку в одной из сетей:

ДИАЛЕКТИЧЕСКИЙ ПОДХОД К ПОНЯТИЮ «РАЗУМ»

Природа мышления, загадка сознания, тайна разума, все это, безусловно, одна из наиболее волнующих человека проблем. С того самого момента, как человек стал задумываться над природой мышления, в подходе к ней существуют два основных диаметрально противоположных направления: материализм и идеализм.

Материализм и идеализм

Идеализм исходит из признания мышления некой особой сущностью, в корне отличной от материи, от всего того, с чем мы имеем дело во внешнем мире. Материализм, напротив, утверждает, что тот вещественный, чувственно воспринимаемый нами мир, к которому принадлежим мы сами, есть единственный действительный мир и наше сознание и мышление, как бы ни казалось оно сверхчувствительным, являются продуктом вещественного, телесного органа мозга.

Естествознание с момента своего возникновения доставляло непрерывно возрастающую аргументацию в пользу материалистической концепции мышления. Данные физиологии, эволюционной биологии, психологии с самых разнообразных сторон обосновывали тезис материализма. Но все эти данные имеют дело с одним объектом — мозгом, с присущей ему способностью мышления, что уже есть в готовом, данным природой виде. Здесь всегда остается «лазейка» для идеалистического сомнения в тезисе о том, что мозг — орган мышления. С наибольшей четкостью эту точку зрения попытался обосновать американский психолог и философ-прагматист У. Джемс. Джемс не оспаривает ни одного утверждения физиологии, устанавливающему связь между процессами, которые мы субъективно осознаем как мышление, и материальными процессами, происходящими при этом в мозгу. Но (и в этом смысл аргументов Джемса) с логической точки зрения эта связь не означает то, что мозг есть орган мысли; любые данные физиологии доказывают лишь наличие соответствия и не более того.

Высшим судьей научных концепций всегда, в конечном счете, является практика. «Если мы можем доказать правильность нашего понимания данного явления природы тем, что сами его производим, вызываем его из его условий, заставляем его к тому же служить нашим целям, то кантовской неуловимой «вещи в себе» приходит конец». Этот аргумент искусственного воспроизведения отсутствовал в традиционной философии и кибернетика дает его независимо от исхода споров о возможности создания искусственного интеллекта, сравнимого с человеческим.

На основе уже достигнутого можно утверждать, что целый ряд функций мышления, ранее считавшихся исключительным достоянием живого мозга, искусственно воспроизводится автоматическими устройствами. В этом заключается огромной важности философский результат кибернетики, констатировать который можно уже сегодня. Итак, конкретно-научное обоснование материалистической концепции мышления, практическое доказательство того, что мышление есть функция высокоорганизованной материальной системы — важнейшее философское завоевание кибернетики. Но кибернетика идет дальше и ставит вопрос, вместе с которым мы попадаем в пучину споров, вопрос о возможности «искусственного интеллекта», «машинного мышления», «кибернетического разума» и так далее.

Здесь обнаруживается полный спектр взглядов, начиная от «крайне оптимистических» до «крайне пессимистических» на возможность возникновения мыслящих машин. Аргументация в пользу пессимистического взгляда обычно двоякая: либо авторы исходят из особой субстанционной природы мышления, либо из особой качественной его специфичности. Правда не совсем ясно, чем отличается первое от второго.

Представляется наиболее разумной позиция, которую можно назвать «умеренно оптимистической»: сегодня нет непреодолимых принципиальных преград на пути создания искусственных устройств, обладающих интеллектом. Но на этом пути стоят огромные трудности, отнюдь не уменьшающиеся с бурным развитием техники, хотя еще лет 10 назад большое количество специалистов рисовали самые радужные перспективы на самое ближайшее будущее; но задача оказалась на много сложнее, чем это показалось вначале. Кроме того, нет оснований считать, что непреодолимые препятствия не появятся в будущем.

Что есть естественный и искусственный разум

Имеющееся у нас знание включает в себя как совокупность научных теорий и эмпирических сведений, так и общефилософские принципы. Из имеющихся научных теорий и эмпирических данных «крайне пессимистический» вывод не следует. Аргументы против возможности искусственного интеллекта, основанные на имеющихся научных теориях и эмпирических данных, могут быть названы «конкретными» аргументами. Обычно они состоят в указании на какие-нибудь определенные действия мышления, которые неспособно выполнить никакое автоматическое устройство. Однако все такие аргументы были опровергнуты в ходе развития кибернетики. Более того, существует теория Маккаллока Питса, сводящая вопрос о выполнении любой функции головного мозга к вопросу о познаваемости этой функции. Не становясь на позиции агностицизма трудно быть приверженцем «конкретных» аргументов. Идея искусственного интеллекта часто объявляется механистической на том основании, что работа ЭВМ управляется законами электродинамики, и, значит, здесь происходит сведение высшего (мышления) к низшему (физическим процессам в ЭВМ). Однако исходная посылка неверна.

Работа ЭВМ отнюдь не управляется законами электродинамики. Этими законами управляется работа отдельных элементов машины. По физическим законам ЭВМ работает только в том смысле, то она, скажем, преобразует электрическую энергию в тепло. Ведь сущность работы состоит не в этом преобразовании, а в том, что она производит определенные арифметико-логические операции.

Машина имеет дело с информацией и работает по законам преобразования информации, то есть по законам кибернетики. Поэтому, если рассматривать эти процессы с позиции механизма, неизбежно оказываешься на позициях механицизма, так как происходит сведение более сложных процессов переработки информации к более простым. Это то же самое, что сказать, будто работа мозга сводится к биохимическим и биофизическим процессам. На самом деле эти процессы происходят на уровне нервных клеток, а на уровне процессов переработки информации действуют другие законы, закономерности которых отнюдь не эквивалентны. С этой точки зрения и работу ЭВМ надо рассматривать как работу системы по переработки информации.

Тезису «искусственный интеллект» приписывается также и отрицание идеального характера сознания и обвинение в вульгарном материализме. На самом деле, это не так. Не касаясь вопроса о структуре информации, представляющей собой меру упорядоченности процесса и составляющей его внутреннее достояние, охарактеризуем внешнюю или относительную информацию, всегда связанную с отношением двух процессов.

Возьмем множество состояний нашего мозга в процессе функционирования. Мозг отражает внешний мир, что значит, что между множеством состояний элементов мозга и множеством состояний внешних процессов имеется соответствие, то есть мозг имеет информацию о внешних процессах. Эта информация заключена и одновременно не заключена в мозгу, так как, сколько бы мы ни исследовали мозг кроме электрических, химических и других характеристик нейронов мы там ничего не обнаружим. Необходимо рассмотреть связь мозга с внешним миром. Именно в этом и заключена информация, носителем которой и являются нейроны.

Информация, с которой работает мозг и есть та идеальная сторона в его работе, и таким образом идеальное не существует в виде особого предмета или субстанции. Оно существует как сторона деятельности мозга, заключающейся в установлении связей между множеством состояний внешнего мира и головного мозга. Идеальная информация человеческого мозга имеет в принципе тот же характер, что и относительная информация вообще.

На известной ступени исторического развития материи произошел качественный скачок, в результате которого информация, превратившись в достояние мозга, приобрела характер идеальной информации. Если мы признаем у кибернетических систем возможность достижения сложности, сравнимой со сложностью мозга, то необходимо признать у таких систем существование черт, которые мы называем идеальными.

Ряд авторов объявляют тезис «искусственный интеллект» противоречащим тезису о социальной природе сознания и мышления. Но здесь скрывается ошибка — отсутствие различия между естественно историческим зарождением мышления и сознательным воспроизведением его человеком в универсальной ЭВМ. Во втором случае машина не становится социальным существом, но человек, поняв сущность мышления, воссоздает его в машине. Если социальная природа мышления закономерна и познаваема, то она может быть в принципе искусственно воспроизведена.

Человек, кроме того, есть не только природное существо, его основные характеристики — продукт социального, а не чисто биологического развития. Это означает, что мышление человека не может развиваться в изоляции, для этого необходимо, чтобы человек был включен в общество. Во-первых, для возникновения мышления необходимо наличие языка, что возможно лишь в обществе. Во-вторых, с кибернетической точки зрения «разумность» машины определяется количеством перерабатываемой информации, поэтому даже мощная система, попавшая в информационно-бедную среду, не может стать достаточно «разумной». Яркий пример — дети, выросшие вне общества, например в лесу. Для человека необходимым условием его развития было функционирование в обществе, так как общество по своим информационным параметрам является чрезвычайно богатой средой.

Все это дает возможность понять, что тезис об общественной природе мышления никак не противоречит тезису об искусственном интеллекте. Кибернетическая система, имеющая достаточную мощность, для полного использования своих возможностей должна быть помещена в информационно-богатую среду, образовав вместе с создателями некий симбиоз, называемый «интегральным интеллектом».

Принцип невозможности кибернетического интеллекта жестко привязывает определенный род функционирования к строго определенному субстрату (мозгу). Это ставит философскую проблему соотношения функции и субстрата. Философский анализ тенденций современного научного знания делает мало вероятным (но не исключает) вывод о жесткой привязанности мышления к мозгу. Именно из-за этого «крайний пессимист» отрицает возможность наличия интеллекта у кибернетического устройства.

Он безоговорочно связывает мышление с одним, строго определенным субстратом — человеческим мозгом, и не приемлет попытки определения мышления без связи со структурой мыслящей системы. По его мнению, это есть сведение мышления только к информационной стороне, в то время как мышлением называют возникшую у биологических существ способность. Таким образом, мышление можно назвать только то, то осуществляется только мозгом человека, но это не является приемлемым решение проблемы.

Разумеется, мышление есть функция высокоорганизованной материи и определено структурой системы. Но с гносеологической точки зрения знание функции выводится из знания структуры, а знание структуры является выводом из все более полного изучения способов функционирования. Если представить себе множество различных систем, осуществляющих функцию мышления, то именно выявление инвариантного аспекта этих систем и будет раскрытием той структуры, которая лежит в процессе мышления. Конечно, может оказаться, что эта структура жестко связана со строго определенным субстратом, но этот тезис должен являться результатом научного исследования, а не исходной предпосылкой.

Вопрос о жесткой связи мышления со строго определенным субстратом связан с вопросом о роли субстратных методов вообще. Не подлежит сомнению ведущая роль в современном естествознании функционально-структурных методов. Пока наука имела дело с непосредственно ощущаемыми объектами, она могла исходить из субстратной точки зрения. Суть ее заключается в том, что объект обладает набором характеристик, выражающим его природу, свойства того материала, из которого он сделан. Зная эти характеристики можно изучить поведение объекта. Материал, субстрат первичен; движение, поведение вторично. Эта точка зрения образует содержание так называемого мифического субстанционализма.

Уже в XIX веке ограниченность этой концепции была вскрыта диалектическим материализмом, показавшим, что «лишь в движении тело обнаруживает, что оно есть... Познание различных форм движения и есть познание тела». Отсюда, разумеется, не следует, что только движение существует и никакого субстрата нет вообще. Отсюда следует лишь неправомерность употребления отношения первичности-вторичности для характеристики связи движения (поведения) и субстрата в плане их реального существования. Материалистическая концепция мышления понимает последнее как свойство особым образом высокоорганизованной материи. В ней не содержится никаких ограничений в отношении специфических характеристик и открывает необозримые перспективы на пути исследования этих характеристик. Кибернетика достигает на этом пути некоторых результатов.

РОЛЬ КИБЕРНЕТИКИ В ФИЛОСОФСКОМ АНАЛИЗЕ «РАЗУМА»

Гносеологический анализ проблемы кибернетики вскрывает роль таких познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Они обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, а выявляются в знании, в его языковом выражении. Орудия познания, формирующиеся в конечном счете на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от ее конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, То есть, в конечном счете, формирующую адекватные схемы внешних действий в существенно меняющихся средах, необходимо наделить такую систему этими орудиями.

Развитие систем кибернетики за последние десятилетия идет по этому пути. Однако степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий неодинакова и в целом пока незначительна.

В наибольшей мере системы кибернетики используют формально-логические структуры, что обусловлено их неспецифичностью для мышления и в сущности алгоритмическим характером. Это дает возможность относительно легкой их технической реализации. Однако даже здесь кибернетике предстоит пройти большой путь. В системах искусственного интеллекта еще слабо используются модальная, императивная, вопросная и иные логики, которые функционируют в человеческом интеллекте и не менее необходимы для успешных познавательных процессов, чем давно освоенные логикой, а затем и кибернетикой формы вывода. Повышение «интеллектуального» уровня технических систем, безусловно, связано не только с расширением применяемых логических средств, но и с более интенсивным их использованием (для проверки информации на непротиворечивость, конструирования планов вычислений и так далее).

Намного сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление.

Прежде всего, для решения ряда задач необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессоре). Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию.

Однако многие универсалии естественных языков, необходимые для выполнения ими познавательных функций, в языках искусственного интеллекта пока реализованы слабо (например, открытость) или используются ограниченно (например, полисемия). Все большее воплощение в семиотических системах универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем кибернетики, особенно тех, в которых проблемная область заранее жестко не определена.

Современные системы искусственного интеллекта способны осуществлять перевод с одномерных языков на многомерные. В частности, они могут строить диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и так далее. ЭВМ производят и обратный перевод (описывают графики и тому подобное с помощью символов). Такого рода перевод является существенным элементом интеллектуальной деятельности. Но современные системы кибернетики пока не способны к непосредственному (без перевода на символический язык) использованию изображений или воспринимаемых сцен для «интеллектуальных» действий. Поиск путей глобального (а не локального) оперирования информацией составляет одну из важнейших перспективных задач теории кибернетики.

Воплощение в информационные массивы и программы систем кибернетики аналогов категорий находится пока в начальной стадии. Аналоги некоторых категорий (например, «целое», «часть», «общее», «единичное») используются в ряде систем представления знаний, в частности в качестве «базовых отношений», в той мере, в какой это необходимо для тех или иных конкретных предметных или проблемных областей, с которыми взаимодействуют системы.

В формализованном понятийном аппарате некоторых систем представления знаний предприняты отдельные (теоретически существенные и практически важные) попытки выражения некоторых моментов содержания и других категорий (например, «причина», «следствие»). Однако ряд категорий (например, «сущность», «явление») в языках систем представления знаний отсутствует. Проблема в целом разработчиками систем искусственного интеллекта в полной мере еще не осмыслена, и предстоит большая работа философов, логиков и кибернетиков по внедрению аналогов категорий в системы представления знаний и другие компоненты интеллектуальных систем. Это одно из перспективных направлений в развитии теории и практики кибернетики.

Современные системы кибернетики почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и так далее.

Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и так далее.

Еще в меньшей мере современные системы кибернетики способны активно воздействовать на внешнюю среду, без чего не может осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.

Таким образом, хотя определенные шаги к воплощению гносеологических характеристик мышления в современных системах кибернетики сделаны, но в целом эти системы еще далеко не владеют комплексом гносеологических орудий, которыми располагает человек и которые необходимы для выполнения совокупности функций абстрактного мышления. Чем больше характеристики систем искусственного интеллекта будут приближены к гносеологическим характеристикам мышления человека, тем ближе будет их «интеллект» к интеллекту человека, точнее, тем выше будет их способность к комбинированию знаковых конструкций, воспринимаемых и интерпретируемых человеком в качестве решения задач и вообще воплощения мыслей.

ПОПЫТКИ СОЗДАНИЯ HOMO TECHNICUS

Человек поставил задачу создать некий аналог себя самого. И он смог это сделать. Механическая часть подобно человеческому телу и управление ею уже имеются — это роботы. Отчасти смоделированы интеллектуальные функции человека. Но цивилизация идет дальше. Ей этого мало. Необходимо создать «Homo teсhnicus». Для решения этой задачи требуется создание «машины», функционирующей подобно человеческому мозгу, но чем дальше продвигаются исследования в области искусственного интеллекта, тем более сложным видится ее решение.

Но представьте себе хотя бы на секунду возможность существования искусственного интеллекта. Машина способная думать, и осознавать свои поступки. Разве такая машина не будет являться новой формой жизни? Фактически намного более совершенной, чем человек. В фантастических книгах о будущем киборги — всего лишь «холодные» расчетливые умы, способные думать лишь логически. Однако кто может быть уверенным в том, что рано или поздно машина задастся вопросом — что я есть? Уже сейчас мы пытаемся создать такую машину. Но сможем ли мы понять вовремя, что мы создали разумное существо?

Искусственный интеллект является сейчас «горячей точкой» научных исследований. В этой точке, как в фокусе, сконцентрированы наибольшие усилия кибернетиков, лингвистов, психологов, философов, математиков и инженеров. Именно здесь решаются многие коренные вопросы, связанные с путями развития научной мысли, с воздействием достижений в области вычислительной техники и роботики на жизнь будущих поколений людей. Здесь возникают и получают права гражданства новые методы научных междисциплинарных исследований. Здесь формируется новый взгляд на роль тех или иных научных результатов и возникает то, что можно было бы назвать философским осмыслением этих результатов.

Раньше с понятием искусственного интеллекта связывали надежды на создание мыслящей машины, способной соперничать с человеческим мозгом и, возможно, превзойти его. Эти надежды, на долгое время захватившие воображение многих энтузиастов, так и остались несбывшимися. Хотя к проблеме искусственного интеллекта продолжают относиться серьезно до сих пор.

Для того чтобы ответить на вопрос, какую машину считать «думающей», специалист по кибернетике А. Тьюринг предложил использовать следующий тест: испытатель через посредника общается с невидимым для него собеседником человеком или машиной. «Интеллектуальной» может считаться та машина, которую испытатель в процессе такого общения не сможет отличить от человека.

Сегодня такая модель рассыпается как мозаика. Если испытатель при проверке компьютера на «интеллектуальность» будет придерживаться достаточно жестких ограничений в выборе темы и формы диалога, этот тест выдержит любой современный компьютер, оснащенный подходящим программным обеспечением. Можно было бы считать признаком интеллектуальности умение поддерживать беседу, но, как было показано, эта человеческая способность легко моделируется на компьютере.

Признаком интеллектуальности может служить способность к обучению. В 1961 г. профессор Д. Мичи, один из ведущих английских специалистов по искусственному интеллекту, описал механизм, состоящий из 300 спичечных коробков, который мог научиться играть в крестики и нолики. Сегодня механизмом самообучения обладают множество компьютерных программ и это вполне нормально.

Задачи доказательства теорем и обучения (например, для овладения навыками в какой-либо игре) решаются с помощью автоматического совершенствования алгоритма посредством обработки пробных вариантов, то есть как бы с помощью накопления собственного опыта. Следует отметить, что способность к обучению представляет собой одно из основных свойств искусственного интеллекта, но еще не говорит о его наличии.

В системах искусственного интеллекта человеческие знания, необходимые для решения задач, должны быть представлены и записаны в форме, пригодной для последующей обработки на компьютере. Сложность заключается в том, что многие аспекты знаний изменяются в зависимости от условий и с трудом поддаются описанию, оставаясь при этом очевидными для человека.

Как отмечалось, в исследованиях по искусственному интеллекту ученые отвлекаются от сходства процессов, происходящих в технической системе или в реализуемых ею программах, с мышлением человека. Если система решает задачи, которые человек обычно решает посредством своего интеллекта, то мы имеем дело с системой искусственного интеллекта. Однако это ограничение недостаточно. Создание традиционных программ для ЭВМ — работа программиста — не есть конструирование искусственного интеллекта. Какие же задачи, решаемые техническими системами, можно рассматривать как конституирующие искусственный интеллект?

Чтобы ответить на этот вопрос, надо уяснить, прежде всего, что такое задача. Как отмечают психологи, этот термин тоже не является достаточно определенным. По-видимому, в качестве исходного можно принять понимание задачи как мыслительной задачи, существующее в психологии. Они подчеркивают, что задача есть только тогда, когда есть работа для мышления, то есть когда имеется некоторая цель, а средства к ее достижению не ясны; их надо найти посредством мышления.

Хорошо по этому поводу сказал Д. Пойа: «...трудность решения в какой-то мере входит в самопонятие задачи: там, где нет трудности, нет и задачи». Если человек имеет очевидное средство, с помощью которого, наверное, можно осуществить желание, поясняет он, то задачи не возникает. Если человек обладает алгоритмом решения некоторой задачи и имеет физическую возможность его реализации, то задачи в собственном смысле уже не существует.

Так понимаемая задача, в сущности, тождественна проблемной ситуации, и решается она посредством преобразования последней. В ее решении участвуют не только условия, которые непосредственно заданы. Человек использует любую находящуюся в его памяти информацию, «модель мира», имеющуюся в его психике и включающую фиксацию разнообразных законов, связей, отношений этого мира.

Если задача не является мыслительной, то она решается на ЭВМ традиционными методами и, значит, не входит в круг задач искусственного интеллекта. Ее интеллектуальная часть выполнена человеком. На долю машины осталась часть работы, которая не требует участия мышления, то есть «бессмысленная», неинтеллектуальная.

Под словом «машина» здесь понимается машина вместе с ее совокупным математическим обеспечением, включающим не только программы, но и необходимые для решения задач «модели мира». Недостатком такого понимания является главным образом его антропоморфизм. Задачи, решаемые искусственным интеллектом, целесообразно определить таким образом, чтобы человек, по крайней мере, в определении отсутствовал. При характеристике мышления мы отмечали, что его основная функция заключается в выработке схем целесообразных внешних действий в бесконечно варьирующих условиях.

Специфика человеческого мышления (в отличие от рассудочной деятельности животных) состоит в том, что человек вырабатывает и накапливает знания, храня их в своей памяти. Выработка схем внешних действий происходит не по принципу «стимул-реакция», а на основе знаний, получаемых дополнительно из среды, для поведения в которой вырабатывается схема действия.

Этот способ выработки схем внешних действий (а не просто действия по командам, пусть даже меняющимся как функции от времени или как однозначно определенные функции от результатов предшествующих шагов), на наш взгляд, является существенной характеристикой любого интеллекта. Отсюда следует, что к системам искусственного интеллекта относятся те, которые, используя заложенные в них правила переработки информации, вырабатывают новые схемы целесообразных действий на основе анализа моделей среды, хранящихся в их памяти. Способность к перестройке самих этих моделей в соответствии с вновь поступающей информацией является свидетельством более высокого уровня искусственного интеллекта.

Большинство исследователей считают наличие собственной внутренней модели мира у технических систем предпосылкой их «интеллектуальности». Формирование такой модели, как мы покажем ниже, связано с преодолением синтаксической односторонности системы, то есть с тем, что символы или та их часть, которой оперирует система, интерпретированы, имеют семантику.

Характеризуя особенности систем искусственного интеллекта, Л.Т. Кузин указывает на:

1) наличие в них собственной внутренней модели внешнего мира; эта модель обеспечивает индивидуальность, относительную самостоятельность системы в оценке ситуации, возможность семантической и прагматической интерпретации запросов к системе;

2) способность пополнения имеющихся знаний;

3) способность к дедуктивному выводу, то есть к генерации информации, которая в явном виде не содержится в системе; это качество позволяет системе конструировать информационную структуру с новой семантикой и практической направленностью;

4) умение оперировать в ситуациях, связанных с различными аспектами нечеткости, включая «понимание» естественного языка;

5) способность к диалоговому взаимодействию с человеком;

6) способность к адаптации.

Иногда в философской литературе утверждается, что допущение возможности выполнения технической системой интеллектуальных функций человека означает сведение высшего (биологического и социального) к низшему (к системам из неорганических компонентов) и, следовательно, противоречит материалистической диалектике. Однако в этом рассуждении не учитывается, что пути усложнения материи однозначно не предначертаны и не исключено, что общество имеет возможность создать из неорганических компонентов (абстрактно говоря, минуя химическую форму движения) системы не менее сложные и не менее способные к отражению, чем биологические. Созданные таким образом системы являлись бы компонентами общества, социальной формой движения.

Следовательно, вопрос о возможности передачи интеллектуальных функций техническим системам, и в частности о возможности наделения их рассмотренными в работе гносеологическими орудиями, не может быть решен только исходя из философских соображений. Он должен быть подвергнут анализу на базе конкретных научных исследований. И пока видится вполне реальной!

ЗАКЛЮЧЕНИЕ

Дороги, которые мы выбираем,
следует отличать от дорог, которые выбирают нас.
Феликс Кривин


Развитие информационной техники позволило компенсировать человеку психофизиологическую ограниченность своего организма в ряде направлений. «Внешняя нервная система», создаваемая и расширяемая человеком, уже дала ему возможность вырабатывать теории, открывать количественные закономерности, раздвигать пределы познания сложных систем. Искусственный интеллект и его совершенствование превращают границы сложности, доступные человеку, в систематически раздвигаемые. Это особенно важно в современную эпоху, когда общество не может успешно развиваться без рационального управления сложными и сверхсложными системами. Разработка проблем искусственного интеллекта является существенным вкладом в осознание человеком закономерностей внешнего и внутреннего мира, в их использование в интересах общества и тем самым в развитие творческой свободы человека.

Сможет ли машина полностью, во всех отношениях заменить человека? Существуют ли вообще какие-нибудь пределы развития кибернетических устройств? Эти вопросы уже десятки лет не утрачивают актуальность, ибо через них проходит линия конфликта между различными философскими школами по поводу современной исторической формы основного вопроса философии: о сущности человеческого сознания и его отношении к функционированию кибернетических устройств.

Пока одни задаются вопросами, другие неустанно делают компьютеры и создают программы. Грядет век информатики, или — быть может, это неудачное выражение, но его смело можно назвать — эпоха «компьютерной культуры».

Проявления этой культуры в виде диалога человека и ЭВМ различных классов, в форме работы пользователей с экспертными системами и базами знаний, в растущем использовании гибких автоматизированных производств и робототехнических систем, во все более широком обращении к мощным пространственно распределенным и даже глобальным сетям коммуникации, в экспансии бытовой и профессиональной информатики налицо уже сейчас.

Работа с информационной техникой порождает новый психологический тип человека-творца, для которого компьютеры будущего (наверняка так же мало похожие на современные ЭВМ, как первые аэропланы — на современные авиалайнеры) будут непосредственным продолжением и орудием его руки и мысли, продолжением столь сильным и столь тонким, что они окажутся в состоянии усиливать не только вербализируемое, но и невербализируемое («неявное») знание, не только логику, но и интуицию.

Но каким он будет, этот век информатики? Мы не можем предвидеть: научно-технический прогресс трудно прогнозируем. Сейчас очевидно, что темпы развития компьютерной техники явно опережают исследование и рассмотрение проблем, связанных с ее эксплуатацией.

И пока ответов на все вопросы нет. Ясно одно — мир компьютеризируется и, согласно закону диалектики, рано или поздно должен произойти скачок — переход количества компьютерных систем в их качество — появление искусственного интеллекта, о чем мечтают многие специалисты.

Однако достижения информационно-кибернетической науки и технологии, подобно силе атома двулики: могут служить как на пользу, так и во вред людям. Будем надеяться, что человеческие разум и добро, воплотившись в реальные благие дела, восторжествуют; будем бороться за воплощение этой надежды! Залог успеха здесь видится в реализации лозунга нового мышления, органически связанного с глубокими преобразованиями, набирающими силу в нашем обществе, с осознанием приоритета общечеловеческих ценностей, с нарастанием тенденции гуманизации бытия на нашей планете.

И даже если «машина» не станет сопротивляться человеческой эксплуатации, а будет решать все или почти все наши проблемы, стоит серьезно задумать над тем, что будем делать мы! Поскольку вся наша жизнь состоит из преодоления препятствий, которые оказываются на пути к удовлетворению потребностей.

Таким образом, изучив большое количество информации, доводов «за» и «против», два диаметрально противоположных отношений к созданию «искусственного разума», вопросов появилось еще больше, чем ответов.

Стремление человека создать автоматические системы управления, компьютерные системы и механического раба с сознанием человека кажется вполне понятным и естественным, но, надо сказать, совершенно не безопасным. И если создание такового невозможно, значит, так тому и быть. Но если механический разум возникнет, мы выпустим джина из лампы, и это непременно приведет к еще большим трудностям его подавления, нежели создания. Но в этом, видимо, и есть сущность нашего существования — мы решаем проблемы для того, чтобы поставить другие — более сложные, и в этом видится единственный смысл нашей творческой деятельности.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Абдеев Р.Ф. Философия информационной цивилизации. — М.: ВЛАДОС-пресс, 1994. — 668 с.

2. Аккумулятор новостей. —

. — 13.10.2004.

3. Баженов Л.Б., Гутчин И.Б. Интеллект и машина — М.: Знание, 1973. — 102 с.

4. Винер Н. Кибернетика. — М., 1968. — 172 c.

5. Девятников В.В. Системы искусственного интеллекта. — М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. — 296 с.

6. Емельянов-Ярославский Л.Б. Интеллектуальная квази-биологическая система. — М.: Наука, 1990. — 128 с.

7. Клаус Г. Кибернетика и философия. — М.: Иностранная литература, 1963. — 232 c.

8. Мировые новости. —

http://www.ct.kz/shownews.asp?idnews=7322. — 14.10.2004.

9. Пушкин В.Г., Урсул А.Д. Информатика, кибернетика, интеллект: философские очерки. — Кишинев, Штиница. — 1989. — 204 с.

10. Томпсон Р. Механистическая и немеханистическая наука / Пер. с англ. — М.: Изд-во «Философская Книга», 1998. — 286 с.

11. Советский энциклопедический словарь / научно-редакционный совет: А.М. Прохоров (пред.). — М.: Советская энциклопедия, 1981. — 1600 с.

12. Эндрю В.А. Искусственный интеллект, М.: Мир, 1985. — 324 с.

~ Кафедра борьбы ИСЕ им. И. Ярыгина, А. Завьялов ~~




Скачать документ

Похожие документы:

  1. Международная электронная научная конференция (26 апреля 2005 года)

    Документ
    Физическое воспитание и спорт в высших учебных заведениях: интеграция в европейское образовательное пространство сборник статей под ред. Ермакова С.С.
  2. Методические рекомендации для студентов Специальность 032101 «физическая культура и спорт» Красноярск 2007 (1)

    Методические рекомендации
    В рекомендациях даны советы по планированию и организации времени, необходимого на изучение дисциплины. Рекомендации по работе в модульно-рейтинговой системе.
  3. Методические рекомендации для студентов Специальность 032101 «физическая культура и спорт» Красноярск 2007 (2)

    Методические рекомендации
    В рекомендациях даны советы по планированию и организации времени, необходимого на изучение дисциплины. Рекомендации по работе в модульно-рейтинговой системе.

Другие похожие документы..